Strong purifying selection at synonymous sites in D. melanogaster.

David S Lawrie, Philipp W Messer, Ruth Hershberg, Dmitri A Petrov
Author Information
  1. David S Lawrie: Department of Genetics, Stanford University, Stanford, CA, USA. dlawrie@stanford.edu

Abstract

Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated.

References

  1. Genetics. 2005 Sep;171(1):145-55 [PMID: 15965246]
  2. Mol Biol Evol. 2010 Jan;27(1):177-92 [PMID: 19759235]
  3. Nucleic Acids Res. 2013 Jan;41(Database issue):D64-9 [PMID: 23155063]
  4. PLoS Genet. 2010 Sep 09;6(9):e1001107 [PMID: 20838593]
  5. Science. 2008 Jun 20;320(5883):1632-5 [PMID: 18566285]
  6. Genetics. 1994 Mar;136(3):927-35 [PMID: 8005445]
  7. Mol Biol Evol. 2007 Jan;24(1):228-35 [PMID: 17041152]
  8. FEBS Lett. 1999 Dec 3;462(3):387-91 [PMID: 10622731]
  9. Genetics. 2004 May;167(1):171-85 [PMID: 15166145]
  10. Science. 1969 May 16;164(3881):788-98 [PMID: 5767777]
  11. J Cell Biol. 2000 Jul 24;150(2):F31-6 [PMID: 10908583]
  12. Genetics. 1995 Feb;139(2):1067-76 [PMID: 7713409]
  13. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 [PMID: 6760125]
  14. Mol Biol Evol. 1985 Jan;2(1):13-34 [PMID: 3916708]
  15. Genome Biol Evol. 2011;3:383-95 [PMID: 21498884]
  16. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006 Nov;150(2):205-15 [PMID: 17426780]
  17. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50 [PMID: 20133581]
  18. Nature. 1991 Jun 20;351(6328):652-4 [PMID: 1904993]
  19. Curr Opin Struct Biol. 2011 Feb;21(1):25-31 [PMID: 21111607]
  20. Annu Rev Genet. 2008;42:287-99 [PMID: 18983258]
  21. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  22. Science. 2007 Jan 26;315(5811):525-8 [PMID: 17185560]
  23. EMBO Rep. 2012 Mar 01;13(3):272-7 [PMID: 22249164]
  24. PLoS Comput Biol. 2010 Feb 05;6(2):e1000664 [PMID: 20140241]
  25. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  26. PLoS Comput Biol. 2010 Dec 02;6(12):e1001025 [PMID: 21152010]
  27. Nat Rev Genet. 2006 Feb;7(2):98-108 [PMID: 16418745]
  28. Mol Biol Evol. 2008 Feb;25(2):454-67 [PMID: 18083702]
  29. Nucleic Acids Res. 2012 Jan;40(Database issue):D706-14 [PMID: 22127867]
  30. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9272-7 [PMID: 18583475]
  31. Mol Biol Evol. 2008 Mar;25(3):568-79 [PMID: 18178545]
  32. Curr Opin Genet Dev. 2001 Dec;11(6):660-6 [PMID: 11682310]
  33. Nucleic Acids Res. 1981 Jan 10;9(1):r43-74 [PMID: 7208352]
  34. Cell. 2011 Nov 11;147(4):789-802 [PMID: 22056041]
  35. Mol Biol Evol. 2007 Aug;24(8):1792-800 [PMID: 17545186]
  36. J Virol. 1996 Jul;70(7):4646-54 [PMID: 8676491]
  37. Trends Genet. 2012 Nov;28(11):574-81 [PMID: 22921354]
  38. Genome Biol. 2007;8(2):R18 [PMID: 17284312]
  39. Mol Biol Evol. 2007 Dec;24(12):2687-97 [PMID: 18000010]
  40. Biochem Biophys Res Commun. 1999 Aug 2;261(2):445-51 [PMID: 10425204]
  41. Theor Popul Biol. 2012 May;81(3):197-209 [PMID: 22269092]
  42. Genetics. 1996 Nov;144(3):1297-307 [PMID: 8913769]
  43. Nature. 1968 Feb 17;217(5129):624-6 [PMID: 5637732]
  44. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  45. Genome Biol. 2005;6(8):R67 [PMID: 16086849]
  46. PLoS Genet. 2009 Jul;5(7):e1000556 [PMID: 19593368]
  47. Mol Biol Evol. 2010 Jun;27(6):1226-34 [PMID: 20150340]
  48. Genetics. 1962 Jun;47:713-9 [PMID: 14456043]
  49. Genetics. 1992 Dec;132(4):1161-76 [PMID: 1459433]
  50. J Mol Biol. 1982 Jul 15;158(4):573-97 [PMID: 6750137]
  51. Nature. 2005 Oct 20;437(7062):1153-7 [PMID: 16237444]
  52. J Evol Biol. 2012 Dec;25(12):2582-95 [PMID: 23020078]
  53. Genes Dev. 2005 Nov 1;19(21):2526-33 [PMID: 16264189]
  54. PLoS Genet. 2008 May 30;4(5):e1000083 [PMID: 18516229]
  55. Nature. 2012 Feb 08;482(7384):173-8 [PMID: 22318601]
  56. PLoS Genet. 2008 Nov;4(11):e1000250 [PMID: 18989456]
  57. Hum Mol Genet. 2011 Dec 1;20(23):4556-68 [PMID: 21875902]
  58. Genetics. 2007 Dec;177(4):2251-61 [PMID: 18073430]
  59. Genome Biol Evol. 2011;3:114-28 [PMID: 21173424]
  60. Genome Biol. 2011 Nov 03;12(11):R110 [PMID: 22050731]
  61. Genome Biol Evol. 2009 May 25;1:67-74 [PMID: 20333178]
  62. BMC Evol Biol. 2008 Jul 31;8:224 [PMID: 18671878]
  63. Genetics. 2011 Aug;188(4):931-40 [PMID: 21596896]
  64. Mol Biol Evol. 2009 Jul;26(7):1591-605 [PMID: 19351792]
  65. Mol Biol Evol. 2008 Nov;25(11):2269-77 [PMID: 18755761]
  66. Bioinformatics. 2006 Oct 15;22(20):2577-9 [PMID: 16882652]
  67. Mol Biol Evol. 2013 Mar;30(3):549-60 [PMID: 23223712]
  68. Genome Biol Evol. 2011;3:1381-9 [PMID: 22042333]
  69. Mol Biol Evol. 2011 Sep;28(9):2615-27 [PMID: 21478372]
  70. J Mol Evol. 2010 Jan;70(1):116-28 [PMID: 20041239]
  71. PLoS Comput Biol. 2012;8(12):e1002846 [PMID: 23284284]
  72. Genetics. 2003 Jan;163(1):239-43 [PMID: 12586711]
  73. Mol Biol Evol. 2004 Mar;21(3):468-88 [PMID: 14660683]
  74. Gene. 1997 Oct 15;199(1-2):293-301 [PMID: 9358069]
  75. Genetics. 2001 Jan;157(1):245-57 [PMID: 11139506]
  76. Genome Res. 2003 Sep;13(9):2042-51 [PMID: 12952875]
  77. Nature. 2007 Nov 8;450(7167):203-18 [PMID: 17994087]
  78. Genome Res. 2011 Nov;21(11):1777-87 [PMID: 21903742]
  79. Nucleic Acids Res. 2004 Sep 24;32(17):5036-44 [PMID: 15448185]
  80. Mol Biol Evol. 2011 May;28(5):1731-43 [PMID: 21191087]
  81. Science. 2009 Apr 10;324(5924):255-8 [PMID: 19359587]
  82. PLoS Genet. 2012;8(3):e1002603 [PMID: 22479199]
  83. Nature. 1999 Jan 28;397(6717):344-7 [PMID: 9950425]
  84. Mol Biol Evol. 2010 Mar;27(3):650-60 [PMID: 19837657]
  85. Hum Mol Genet. 2003 Feb 1;12(3):205-16 [PMID: 12554675]
  86. PLoS Genet. 2010 Sep 09;6(9):e1001115 [PMID: 20838599]
  87. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  88. Genome Biol Evol. 2011;3:749-61 [PMID: 21803767]
  89. RNA. 2010 Dec;16(12):2516-28 [PMID: 20971810]
  90. Mol Biol Evol. 2010 Aug;27(8):1912-22 [PMID: 20231333]
  91. Genome Res. 2005 Jul;15(7):901-13 [PMID: 15965027]
  92. Nat Struct Mol Biol. 2013 Feb;20(2):237-43 [PMID: 23262490]
  93. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  94. J Mol Biol. 1981 Sep 25;151(3):389-409 [PMID: 6175758]
  95. J Comput Biol. 2003;10(3-4):313-22 [PMID: 12935330]
  96. Cell Rep. 2012 Jan 26;1(1):69-82 [PMID: 22832108]
  97. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):E678-86 [PMID: 23382244]
  98. Nat Rev Genet. 2011 Aug 31;12(10):683-91 [PMID: 21878961]
  99. Genetics. 2007 Dec;177(4):2083-99 [PMID: 18073425]
  100. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475-9 [PMID: 9990048]
  101. Genetics. 2009 Oct;183(2):651-62, 1SI-23SI [PMID: 19620398]
  102. Genome Res. 2007 Dec;17(12):1755-62 [PMID: 17989248]
  103. RNA. 2011 Dec;17(12):2063-73 [PMID: 22045228]
  104. Cell. 2008 Jul 25;134(2):341-52 [PMID: 18662548]
  105. J Mol Biol. 1987 Jan 20;193(2):413-7 [PMID: 3298659]
  106. Nature. 2011 Mar 24;471(7339):473-9 [PMID: 21179090]
  107. J Evol Biol. 2012 Oct;25(10):1975-1990 [PMID: 22901008]
  108. Proc Natl Acad Sci U S A. 1938 Jul;24(7):253-9 [PMID: 16577841]
  109. Curr Opin Genet Dev. 1998 Dec;8(6):688-93 [PMID: 9914211]
  110. Nucleic Acids Res. 1998 Oct 15;26(20):4778-82 [PMID: 9753749]
  111. Mol Biol Evol. 2007 Feb;24(2):374-81 [PMID: 17101719]
  112. Genetics. 1993 Aug;134(4):1289-303 [PMID: 8375663]
  113. Nat Rev Genet. 2011 Jan;12(1):32-42 [PMID: 21102527]
  114. Genome Res. 2011 Jun;21(6):863-74 [PMID: 21393387]
  115. BMC Evol Biol. 2007 Nov 15;7:226 [PMID: 18005411]
  116. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  117. Nat Struct Mol Biol. 2009 Mar;16(3):274-80 [PMID: 19198590]
  118. Nucleic Acids Res. 1989 Jul 11;17(13):5029-39 [PMID: 2762118]
  119. Cell. 2010 Apr 16;141(2):344-54 [PMID: 20403328]
  120. Genet Res. 1974 Feb;23(1):23-35 [PMID: 4407212]
  121. Genetics. 2006 Jun;173(2):891-900 [PMID: 16547091]
  122. Nucleic Acids Res. 1998 Jul 1;26(13):3188-93 [PMID: 9628917]
  123. Bioinformatics. 2011 Jul 1;27(13):1758-64 [PMID: 21551148]
  124. Science. 2012 Mar 9;335(6073):1235-8 [PMID: 22403392]
  125. Genome Res. 2010 Jan;20(1):110-21 [PMID: 19858363]
  126. J Bacteriol. 1996 May;178(9):2718-20 [PMID: 8626345]
  127. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  128. J Virol. 1998 Feb;72(2):1497-503 [PMID: 9445053]
  129. Mol Biol Evol. 2012 Oct;29(10):3037-44 [PMID: 22490819]
  130. PLoS Genet. 2009 Jun;5(6):e1000495 [PMID: 19503600]
  131. Genetics. 1994 Sep;138(1):227-34 [PMID: 8001789]
  132. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6368-72 [PMID: 15840711]

Grants

  1. R01GM100366/NIGMS NIH HHS
  2. T32 HG000044/NHGRI NIH HHS
  3. R01GM097415/NIGMS NIH HHS
  4. R01 GM097415/NIGMS NIH HHS
  5. R01 GM100366/NIGMS NIH HHS

MeSH Term

Amino Acid Substitution
Animals
Drosophila melanogaster
Evolution, Molecular
Gene Expression
Genetic Drift
Humans
Mutation
Phylogeny
Polymorphism, Genetic
Polymorphism, Single Nucleotide
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0sitessynonymousconstraintstrongDrosophilaweakselectiveoftenimportantdatashowmelanogasterfractionpurifyingselectiongeneparticularlydevelopmentalSynonymousgenerallyassumedsubjectreasonneglectedpossiblesourcefunctionalvariationusesitefrequencyspectradeeppopulationsequencingcontraryexpectation22%four-fold4DevolveappearLinkingpolymorphismdivergencefindexposedhigherpositionsslowerevolutionphylogenyfunctionunderlyinginferredappearsseparatesplicingenhancersnucleosomepositioningtranslationaloptimizationgeneratingcanonicalcodonbiaswithincorrelateswellexpressionmid-lateembryopupaeadultstagesGenesenrichedstronglyconstrainedtendfunctionallyinvolvedkeypathwaysGivenobservedwidespreadactinglikelylimitedrolegeneticdiseaseadaptationreevaluatedStrongD

Similar Articles

Cited By