Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands.

David H Hembry, Atsushi Kawakita, Neil E Gurr, Mark A Schmaedick, Bruce G Baldwin, Rosemary G Gillespie
Author Information
  1. David H Hembry: Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA. hembry@ecology.kyoto-u.ac.jp

Abstract

A challenge for coevolutionary theory is how different types of interaction influence the diversification of coevolving clades. Reciprocal specialization is characteristic of certain coevolving, mutualistic interactions, but whether this specialization seen in ecological time constrains changes in patterns of interaction over evolutionary time remains unclear. Here, we examine the co-radiation of Glochidion trees (Phyllanthaceae: Phyllanthus s. l.) and pollinating, seed-predatory Epicephala moths (Lepidoptera: Gracillariidae) on young (mostly later than 5 Ma) oceanic islands in southeastern Polynesia. Epicephala are the sole known pollinators of Glochidion trees, and show extreme reciprocal specialization in continental Asia. We find that Glochidion and Epicephala diversified across these islands through repeated, non-congruent colonizations, and that one recently colonizing Epicephala lineage has spread across 12 host species in three archipelagos in less than 1 Myr. These results indicate that reciprocal specialization and coadaptation do not prevent dramatic changes in associations between intimately associated taxa over short evolutionary time scales. Not only are these host associations more dynamic than previously recognized, but these changes in patterns of interaction may play an important role in the diversification of coevolving taxa.

Keywords

References

  1. Evolution. 2002 Oct;56(10):2067-82 [PMID: 12449493]
  2. Evolution. 2008 Oct;62(10):2676-87 [PMID: 18752609]
  3. Proc Biol Sci. 2009 Feb 7;276(1656):417-26 [PMID: 18948251]
  4. Am J Bot. 2000 Jan;87(1):76-95 [PMID: 10636832]
  5. Mol Ecol. 2006 Oct;15(12):3567-81 [PMID: 17032258]
  6. New Phytol. 2009 Aug;183(3):589-599 [PMID: 19659584]
  7. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  8. PLoS One. 2012;7(7):e41657 [PMID: 22848559]
  9. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5264-7 [PMID: 12695568]
  10. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  11. Mol Phylogenet Evol. 2009 Dec;53(3):982-94 [PMID: 19751837]
  12. Am Nat. 2007 Apr;169(4):455-65 [PMID: 17273981]
  13. Syst Biol. 2008 Oct;57(5):758-71 [PMID: 18853362]
  14. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1265-72 [PMID: 20080597]
  15. Syst Biol. 2004 Oct;53(5):673-84 [PMID: 15545248]
  16. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  17. Mol Ecol. 2002 Aug;11(8):1573-8 [PMID: 12144676]
  18. Evolution. 2008 Jan;62(1):220-5 [PMID: 18067570]
  19. Science. 2011 Sep 23;333(6050):1742-6 [PMID: 21940893]
  20. Am Nat. 2010 Dec;176(6):802-17 [PMID: 20950142]
  21. Syst Biol. 2012 Dec 1;61(6):1029-47 [PMID: 22848088]
  22. Am J Bot. 2007 Jun;94(6):1028-40 [PMID: 21636472]
  23. Mol Biol Evol. 2012 Aug;29(8):1969-73 [PMID: 22367748]
  24. Mol Phylogenet Evol. 2012 Apr;63(1):168-79 [PMID: 22281208]
  25. Syst Biol. 2002 Apr;51(2):217-34 [PMID: 12028729]
  26. Biol Lett. 2012 Apr 23;8(2):258-61 [PMID: 21900312]
  27. J Ethnopharmacol. 1985 Jul;13(3):239-80 [PMID: 3903354]
  28. Evolution. 2001 Feb;55(2):282-94 [PMID: 11308086]
  29. J Chem Ecol. 2007 May;33(5):1065-81 [PMID: 17394049]
  30. Evolution. 2004 Oct;58(10):2201-14 [PMID: 15562685]
  31. Bioinformatics. 2003 Aug 12;19(12):1572-4 [PMID: 12912839]
  32. Mol Phylogenet Evol. 2012 Mar;62(3):898-906 [PMID: 22178365]
  33. Proc Biol Sci. 2010 Sep 22;277(1695):2765-74 [PMID: 20427340]
  34. Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6558-65 [PMID: 15851680]
  35. Evolution. 2002 Aug;56(8):1663-72 [PMID: 12353759]
  36. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 [PMID: 7881515]
  37. Bioinformatics. 2011 Feb 15;27(4):592-3 [PMID: 21169378]
  38. Nature. 2002 Jun 13;417(6890):735-8 [PMID: 12066183]
  39. Am Nat. 2008 Jun;171(6):816-23 [PMID: 18462130]
  40. PhytoKeys. 2011;(4):67-94 [PMID: 22171182]
  41. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

MeSH Term

Animals
Biodiversity
Biological Evolution
DNA, Chloroplast
DNA, Ribosomal
Genitalia, Male
Lepidoptera
Magnoliopsida
Male
Models, Statistical
Molecular Sequence Data
Phylogeny
Phylogeography
Pollination
Polynesia
Seeds
Symbiosis

Chemicals

DNA, Chloroplast
DNA, Ribosomal

Word Cloud

Created with Highcharts 10.0.0EpicephaladiversificationcoevolvingspecializationinteractiontimechangesGlochidionislandspatternsevolutionarytreesoceanicsoutheasternPolynesiareciprocalacrosscolonizationshostassociationstaxapollinationmutualismchallengecoevolutionarytheorydifferenttypesinfluencecladesReciprocalcharacteristiccertainmutualisticinteractionswhetherseenecologicalconstrainsremainsunclearexamineco-radiationPhyllanthaceae:Phyllanthusslpollinatingseed-predatorymothsLepidoptera:Gracillariidaeyoungmostlylater5MasoleknownpollinatorsshowextremecontinentalAsiafinddiversifiedrepeatednon-congruentonerecentlycolonizinglineagespread12speciesthreearchipelagosless1MyrresultsindicatecoadaptationpreventdramaticintimatelyassociatedshortscalesdynamicpreviouslyrecognizedmayplayimportantroleNon-congruentPhyllantheaecoevolutionspecialized

Similar Articles

Cited By