Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume.

Katarzyna Jednoróg, Natalia Gawron, Artur Marchewka, Stefan Heim, Anna Grabowska
Author Information
  1. Katarzyna Jednoróg: Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland, k.jednorog@nencki.gov.pl.

Abstract

The variety of different causal theories together with inconsistencies about the anatomical brain markers emphasize the heterogeneity of developmental dyslexia. Attempts were made to test on a behavioral level the existence of subtypes of dyslexia showing distinguishable cognitive deficits. Importantly, no research was directly devoted to the investigation of structural brain correlates of these subtypes. Here, for the first time, we applied voxel-based morphometry (VBM) to study grey matter volume (GMV) differences in a relatively large sample (n = 46) of dyslexic children split into three subtypes based on the cognitive deficits: phonological, rapid naming, magnocellular/dorsal, and auditory attention shifting. VBM revealed GMV clusters specific for each studied group including areas of left inferior frontal gyrus, cerebellum, right putamen, and bilateral parietal cortex. In addition, using discriminant analysis on these clusters 79% of cross-validated cases were correctly re-classified into four groups (controls vs. three subtypes). Current results indicate that dyslexia may result from distinct cognitive impairments characterized by distinguishable anatomical markers.

References

  1. Cogn Neuropsychol. 2012;29(1-2):104-22 [PMID: 22559749]
  2. Psychon Bull Rev. 2006 Dec;13(6):1091-6 [PMID: 17484441]
  3. Neuroimage. 2008 Jul 1;41(3):903-13 [PMID: 18424084]
  4. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 [PMID: 17360506]
  5. J Neurosci. 2009 Jun 24;29(25):8270-9 [PMID: 19553466]
  6. Trends Neurosci. 2001 Sep;24(9):508-11 [PMID: 11506881]
  7. Hum Brain Mapp. 1996;4(2):103-12 [PMID: 20408190]
  8. Cereb Cortex. 2005 Feb;15(2):229-37 [PMID: 15238434]
  9. Acta Neurobiol Exp (Wars). 2008;68(1):73-82 [PMID: 18389017]
  10. Cognition. 2007 Aug;104(2):198-230 [PMID: 16859667]
  11. Brain. 2003 Apr;126(Pt 4):841-65 [PMID: 12615643]
  12. Brain. 2005 Oct;128(Pt 10):2453-61 [PMID: 15975942]
  13. Curr Opin Neurobiol. 2004 Apr;14(2):212-7 [PMID: 15082327]
  14. J Child Neurol. 2008 Apr;23(4):368-80 [PMID: 18160557]
  15. Neuropsychologia. 2005;43(3):324-31 [PMID: 15707610]
  16. Dev Sci. 2006 May;9(3):237-55; discussion 265-9 [PMID: 16669791]
  17. Biol Psychiatry. 2011 May 1;69(9):857-66 [PMID: 21183160]
  18. Neuron. 1998 Aug;21(2):279-82 [PMID: 9728909]
  19. Cortex. 2010 Nov-Dec;46(10):1284-98 [PMID: 20650450]
  20. J Neurosci. 2011 Dec 14;31(50):18266-74 [PMID: 22171031]
  21. Neuroreport. 2005 Mar 15;16(4):397-401 [PMID: 15729145]
  22. Neurology. 2004 Aug 24;63(4):742-5 [PMID: 15326259]
  23. Cortex. 2005 Jun;41(3):304-15 [PMID: 15871596]
  24. Dyslexia. 2010 Aug;16(3):258-82 [PMID: 20680995]
  25. Brain Struct Funct. 2009 Oct;213(6):511-23 [PMID: 19618210]
  26. Ann Neurol. 1996 Mar;39(3):407-12 [PMID: 8602765]
  27. Nat Neurosci. 2000 Mar;3(3):284-91 [PMID: 10700262]
  28. Biol Psychiatry. 2006 Nov 15;60(10):1071-80 [PMID: 16876137]
  29. Psychiatry Res. 2011 Jan 30;191(1):31-5 [PMID: 21129938]
  30. Hum Brain Mapp. 2009 Jul;30(7):2278-92 [PMID: 19235876]
  31. Neuroimage. 2002 Nov;17(3):1266-76 [PMID: 12414266]
  32. Neuropsychologia. 2000;38(7):935-43 [PMID: 10775704]
  33. Neuroimage. 2010 Dec;53(4):1346-58 [PMID: 20633659]
  34. Neuroimage. 2007 Oct 15;38(1):95-113 [PMID: 17761438]
  35. Neuroimage. 2004 Jun;22(2):676-87 [PMID: 15193596]
  36. Brain Res. 2009 Dec 11;1302:132-47 [PMID: 19631618]
  37. Cereb Cortex. 2012 Apr;22(4):838-53 [PMID: 21709178]
  38. Hum Brain Mapp. 2008 May;29(5):613-25 [PMID: 17636558]
  39. Nat Neurosci. 2003 Jul;6(7):767-73 [PMID: 12754516]
  40. Neuroimage. 2005 Jul 1;26(3):839-51 [PMID: 15955494]
  41. Neurology. 2001 Mar 27;56(6):781-3 [PMID: 11274316]
  42. Neuropsychologia. 2008 Nov;46(13):3170-8 [PMID: 18692514]

MeSH Term

Attention
Brain
Brain Mapping
Child
Cluster Analysis
Cognition Disorders
Female
Gray Matter
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Reading
Speech Disorders
Wechsler Scales

Word Cloud

Created with Highcharts 10.0.0subtypesdyslexiacognitiveanatomicalbrainmarkersdistinguishableVBMgreymattervolumeGMVthreeclustersdistinctcharacterizedvarietydifferentcausaltheoriestogetherinconsistenciesemphasizeheterogeneitydevelopmentalAttemptsmadetestbehaviorallevelexistenceshowingdeficitsImportantlyresearchdirectlydevotedinvestigationstructuralcorrelatesfirsttimeappliedvoxel-basedmorphometrystudydifferencesrelativelylargesamplen=46dyslexicchildrensplitbaseddeficits:phonologicalrapidnamingmagnocellular/dorsalauditoryattentionshiftingrevealedspecificstudiedgroupincludingareasleftinferiorfrontalgyruscerebellumrightputamenbilateralparietalcortexadditionusingdiscriminantanalysis79%cross-validatedcasescorrectlyre-classifiedfourgroupscontrolsvsCurrentresultsindicatemayresultimpairmentsCognitivepatterns

Similar Articles

Cited By