A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates.

Cho Rong Park, Mi Jin Moon, Sumi Park, Dong-Kyu Kim, Eun Bee Cho, Robert Peter Millar, Jong-Ik Hwang, Jae Young Seong
Author Information
  1. Cho Rong Park: Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea.

Abstract

The glucagon (GCG) peptide family consists of GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from a common GCG precursor, and the glucose-dependent insulinotropic polypeptide (GIP). These peptides interact with cognate receptors, GCGR, GLP1R, GLP2R, and GIPR, which belong to the secretin-like G protein-coupled receptor (GPCR) family. We used bioinformatics to identify genes encoding a novel GCG-related peptide (GCRP) and its cognate receptor, GCRPR. The GCRP and GCRPR genes were found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and in teleosts including medaka, fugu, tetraodon, and stickleback. However, they were not present in mammals and zebrafish. Phylogenetic and genome synteny analyses showed that GCRP emerged through two rounds of whole genome duplication (2R) during early vertebrate evolution. GCRPR appears to have arisen by local tandem gene duplications from a common ancestor of GCRPR, GCGR, and GLP2R after 2R. Biochemical ligand-receptor interaction analyses revealed that GCRP had the highest affinity for GCRPR in comparison to other GCGR family members. Stimulation of chicken, Xenopus, and medaka GCRPRs activated Gαs-mediated signaling. In contrast to chicken and Xenopus GCRPRs, medaka GCRPR also induced Gαq/11-mediated signaling. Chimeric peptides and receptors showed that the K(16)M(17)K(18) and G(16)Q(17)A(18) motifs in GCRP and GLP1, respectively, may at least in part contribute to specific recognition of their cognate receptors through interaction with the receptor core domain. In conclusion, we present novel data demonstrating that GCRP and GCRPR evolved through gene/genome duplications followed by specific modifications that conferred selective recognition to this ligand-receptor pair.

References

  1. Endocrinology. 2009 Jun;150(6):2837-46 [PMID: 19164475]
  2. Diabetes Obes Metab. 2011 Oct;13 Suppl 1:69-81 [PMID: 21824259]
  3. Mol Pharmacol. 2005 Apr;67(4):1099-110 [PMID: 15635044]
  4. J Clin Endocrinol Metab. 2002 Mar;87(3):1239-46 [PMID: 11889194]
  5. Lancet. 2002 Mar 9;359(9309):824-30 [PMID: 11897280]
  6. Nat Med. 2003 Sep;9(9):1173-9 [PMID: 12925848]
  7. J Mol Endocrinol. 2000 Dec;25(3):321-35 [PMID: 11116211]
  8. Diabetes. 2010 Aug;59(8):1890-8 [PMID: 20522593]
  9. Mol Cells. 2011 Oct;32(4):389-95 [PMID: 21904878]
  10. J Biol Chem. 1993 Sep 15;268(26):19650-5 [PMID: 8396143]
  11. Pancreas. 1995 Aug;11(2):196-200 [PMID: 7479679]
  12. Gen Comp Endocrinol. 2011 Jan 1;170(1):68-78 [PMID: 21036176]
  13. Genome Biol. 2001;2(12):REVIEWS3013 [PMID: 11790261]
  14. J Biol Chem. 2009 Jul 17;284(29):19402-11 [PMID: 19478087]
  15. Mol Endocrinol. 2003 Feb;17(2):161-71 [PMID: 12554744]
  16. Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13942-7 [PMID: 17715056]
  17. Br J Pharmacol. 2012 May;166(1):4-17 [PMID: 22289055]
  18. Endocr Rev. 1999 Dec;20(6):876-913 [PMID: 10605628]
  19. J Mol Model. 2009 Jan;15(1):53-65 [PMID: 18941807]
  20. J Biol Chem. 2004 Dec 24;279(52):54445-53 [PMID: 15475353]
  21. Protein Pept Lett. 2004 Feb;11(1):15-22 [PMID: 14965274]
  22. Regul Pept. 1996 May 7;63(1):17-22 [PMID: 8795084]
  23. Front Endocrinol (Lausanne). 2012 Nov 19;3:141 [PMID: 23181056]
  24. Brain Res. 2007 May 29;1149:118-26 [PMID: 17433266]
  25. J Biol Chem. 1994 Mar 4;269(9):6275-8 [PMID: 8119974]
  26. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16084-9 [PMID: 16236727]
  27. Eur J Biochem. 1994 Nov 1;225(3):1151-6 [PMID: 7957206]
  28. J Biol Chem. 2010 Jan 1;285(1):723-30 [PMID: 19861722]
  29. Br J Pharmacol. 2003 Mar;138(5):787-94 [PMID: 12642379]
  30. Gen Comp Endocrinol. 2009 Mar;161(1):3-12 [PMID: 19007784]
  31. Mol Endocrinol. 2004 Jan;18(1):105-16 [PMID: 14525953]
  32. J Biol Chem. 1986 Sep 5;261(25):11880-9 [PMID: 3528148]
  33. J Biol Chem. 2012 Feb 3;287(6):3873-84 [PMID: 22105074]
  34. FEBS Lett. 2002 Oct 23;530(1-3):244-8 [PMID: 12387900]
  35. Mol Endocrinol. 2005 Mar;19(3):722-31 [PMID: 15563546]
  36. J Biol Chem. 2001 Jun 15;276(24):21489-99 [PMID: 11262390]
  37. J Biol Chem. 2009 Dec 4;284(49):34135-44 [PMID: 19815559]
  38. Pharmacol Rev. 2003 Mar;55(1):167-94 [PMID: 12615957]
  39. Endocrinology. 1999 Sep;140(9):3919-27 [PMID: 10465260]
  40. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7911-6 [PMID: 8755576]
  41. Diabetologia. 2007 Aug;50(8):1752-62 [PMID: 17558485]
  42. Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12836-41 [PMID: 15326300]
  43. PLoS One. 2012;7(3):e32923 [PMID: 22470432]
  44. Mol Biol Evol. 2013 May;30(5):1119-30 [PMID: 23427277]
  45. Ann N Y Acad Sci. 2010 Jul;1200:67-74 [PMID: 20633134]
  46. J Clin Endocrinol Metab. 1993 Apr;76(4):912-7 [PMID: 8473405]
  47. Mol Cells. 2010 Aug;30(2):149-54 [PMID: 20799012]
  48. Exp Neurol. 2007 Feb;203(2):293-301 [PMID: 17125767]
  49. J Biol Chem. 2008 Jul 25;283(30):21054-64 [PMID: 18499677]
  50. Nat Med. 2000 Jul;6(7):802-7 [PMID: 10888930]
  51. Gastroenterology. 2007 May;132(6):2131-57 [PMID: 17498508]
  52. J Biol Chem. 2010 Aug 6;285(32):24508-18 [PMID: 20529866]
  53. Front Neurosci. 2012 Jan 24;6:3 [PMID: 22291614]
  54. J Biol Chem. 2008 Apr 25;283(17):11340-7 [PMID: 18287102]
  55. Proc Natl Acad Sci U S A. 1987 May;84(10):3434-8 [PMID: 3033647]
  56. J Physiol. 2001 Oct 15;536(Pt 2):375-85 [PMID: 11600673]
  57. Regul Pept. 2001 Apr 2;98(1-2):1-12 [PMID: 11179772]

MeSH Term

Animals
Gastric Inhibitory Polypeptide
Phylogeny
Protein Binding
Receptors, Gastrointestinal Hormone
Vertebrates

Chemicals

Receptors, Gastrointestinal Hormone
Gastric Inhibitory Polypeptide
gastric inhibitory polypeptide receptor

Word Cloud

Created with Highcharts 10.0.0GCRPRGCRPpeptidefamilyreceptorGCGcognatereceptorsGCGRnovelchickenXenopusmedakaGLP1commonpeptidesGLP2RGgenespresentgenomeanalysesshowed2Rduplicationsligand-receptorinteractionmembersGCRPRssignalingK161718specificrecognitionglucagonconsistsglucagon-like1GLP2derivedprecursorglucose-dependentinsulinotropicpolypeptideGIPinteractGLP1RGIPRbelongsecretin-likeprotein-coupledGPCRusedbioinformaticsidentifyencodingGCG-relatedfoundrepresentativetetrapodtaxaanolelizardteleostsincludingfugutetraodonsticklebackHowevermammalszebrafishPhylogeneticsyntenyemergedtworoundswholeduplicationearlyvertebrateevolutionappearsarisenlocaltandemgeneancestorBiochemicalrevealedhighestaffinitycomparisonStimulationactivatedGαs-mediatedcontrastalsoinducedGαq/11-mediatedChimericMQmotifsrespectivelymayleastpartcontributecoredomainconclusiondatademonstratingevolvedgene/genomefollowedmodificationsconferredselectivepairglucagon-relatedaccountcoevolutionvertebrates

Similar Articles

Cited By