Peroxisome proliferator-activated receptor γ (PPARγ) and its target genes are downstream effectors of FoxO1 protein in islet β-cells: mechanism of β-cell compensation and failure.

Dhananjay Gupta, Averi A Leahy, Navjot Monga, Mina Peshavaria, Thomas L Jetton, Jack L Leahy
Author Information
  1. Dhananjay Gupta: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
  2. Averi A Leahy: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
  3. Navjot Monga: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
  4. Mina Peshavaria: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
  5. Thomas L Jetton: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
  6. Jack L Leahy: From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405. Electronic address: jleahy@uvm.edu.

Abstract

The molecular mechanisms and signaling pathways that drive islet β-cell compensation and failure are not fully resolved. We have used in vitro and in vivo systems to show that FoxO1, an integrator of metabolic stimuli, inhibits PPARγ expression in β-cells, thus transcription of its target genes (Pdx1, glucose-dependent insulinotropic polypeptide (GIP) receptor, and pyruvate carboxylase) that are important regulators of β-cell function, survival, and compensation. FoxO1 inhibition of target gene transcription is normally relieved when upstream activation induces its translocation from the nucleus to the cytoplasm. Attesting to the central importance of this pathway, islet expression of PPARγ and its target genes was enhanced in nondiabetic insulin-resistant rats and markedly reduced with diabetes induction. Insight into the impaired PPARγ signaling with hyperglycemia was obtained with confocal microscopy of pancreas sections that showed an intense nuclear FoxO1 immunostaining pattern in the β-cells of diabetic rats in contrast to the nuclear and cytoplasmic FoxO1 in nondiabetic rats. These findings suggest a FoxO1/PPARγ-mediated network acting as a core component of β-cell adaptation to metabolic stress, with failure of this response from impaired FoxO1 activation causing or exacerbating diabetes.

Keywords

References

  1. Diabetes. 2000 Sep;49(9):1517-24 [PMID: 10969836]
  2. Diabetologia. 2008 Nov;51(11):2022-30 [PMID: 18769905]
  3. Diabetologia. 2009 Jun;52(6):1087-91 [PMID: 19296078]
  4. Mol Cell Biol. 2009 Aug;29(16):4417-30 [PMID: 19506018]
  5. Prog Lipid Res. 2006 Mar;45(2):120-59 [PMID: 16476485]
  6. Diabetes. 2007 Jan;56(1):88-95 [PMID: 17192469]
  7. PLoS One. 2011;6(11):e28050 [PMID: 22140505]
  8. Diabetologia. 2011 Mar;54(3):605-16 [PMID: 21107520]
  9. Cell Metab. 2011 Apr 6;13(4):440-449 [PMID: 21459328]
  10. J Biol Chem. 2009 May 1;284(18):12188-97 [PMID: 19246449]
  11. J Biol Chem. 2005 Jun 10;280(23):22297-307 [PMID: 15817464]
  12. J Mol Cell Biol. 2011 Oct;3(5):276-82 [PMID: 21669942]
  13. J Biol Chem. 2004 Feb 27;279(9):7470-5 [PMID: 14660628]
  14. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14843-7 [PMID: 10611300]
  15. Diabetes. 1997 Feb;46(2):258-64 [PMID: 9000703]
  16. Mol Cell Biol. 2009 Apr;29(8):2053-67 [PMID: 19237535]
  17. Endocr J. 2007 Aug;54(4):507-15 [PMID: 17510498]
  18. Diabetes. 1996 Nov;45(11):1626-30 [PMID: 8866570]
  19. J Clin Invest. 2004 Sep;114(6):828-36 [PMID: 15372107]
  20. Diabetes. 2006 May;55(5):1190-6 [PMID: 16644672]
  21. Mol Cell Biol. 2003 Oct;23(20):7222-9 [PMID: 14517292]
  22. N Engl J Med. 2004 Sep 9;351(11):1106-18 [PMID: 15356308]
  23. J Biol Chem. 2006 Jul 21;281(29):19881-91 [PMID: 16670091]
  24. Diabetes. 2005 Aug;54(8):2294-304 [PMID: 16046294]
  25. Diabetologia. 2010 Apr;53(4):699-711 [PMID: 20033803]
  26. Mol Endocrinol. 2012 Mar;26(3):521-33 [PMID: 22322596]
  27. Trends Endocrinol Metab. 2005 May-Jun;16(4):183-9 [PMID: 15860415]
  28. Curr Diab Rep. 2009 Jun;9(3):215-20 [PMID: 19490823]
  29. J Clin Invest. 2003 Apr;111(8):1147-60 [PMID: 12697734]
  30. Annu Rev Biochem. 2008;77:289-312 [PMID: 18518822]
  31. Nat Genet. 2010 Feb;42(2):142-8 [PMID: 20081857]
  32. Diabetes. 2010 Jun;59(6):1445-50 [PMID: 20332343]
  33. Diabetologia. 2000 Sep;43(9):1165-9 [PMID: 11043863]
  34. J Biol Chem. 2005 Jul 22;280(29):27466-76 [PMID: 15917242]
  35. PLoS One. 2013;8(1):e50128 [PMID: 23372643]
  36. Diabetes. 1996 Jul;45(7):886-90 [PMID: 8666138]
  37. Cell. 2012 Sep 14;150(6):1223-34 [PMID: 22980982]
  38. Mol Endocrinol. 2012 Feb;26(2):257-71 [PMID: 22240811]
  39. Am J Physiol Endocrinol Metab. 2005 Mar;288(3):E471-8 [PMID: 15507531]
  40. Nat Genet. 2002 Oct;32(2):245-53 [PMID: 12219087]
  41. Biochem J. 2012 Jun 1;444(2):239-47 [PMID: 22417654]
  42. J Biol Chem. 2010 Aug 27;285(35):27396-27401 [PMID: 20519497]
  43. Diabetologia. 2009 Jun;52(6):1122-32 [PMID: 19294363]
  44. Am J Physiol Endocrinol Metab. 2008 Apr;294(4):E679-87 [PMID: 18230696]
  45. Am J Physiol Gastrointest Liver Physiol. 2007 Jul;293(1):G319-26 [PMID: 17463185]
  46. Diabetologia. 2010 Jun;53(6):1019-32 [PMID: 20225132]
  47. Diabetes Metab J. 2011 Oct;35(5):458-65 [PMID: 22111036]
  48. J Clin Invest. 2006 Mar;116(3):775-82 [PMID: 16485043]
  49. Mol Endocrinol. 2012 Jul;26(7):1203-12 [PMID: 22570331]
  50. Diabetes. 2002 Mar;51(3):676-85 [PMID: 11872666]
  51. Hum Mol Genet. 2009 Jul 1;18(13):2388-99 [PMID: 19386626]
  52. Metabolism. 1993 Oct;42(10):1229-31 [PMID: 8412734]
  53. Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E707-14 [PMID: 15562255]
  54. J Biol Chem. 2008 Nov 21;283(47):32462-70 [PMID: 18718916]
  55. Endocrinology. 2012 Oct;153(10):4593-9 [PMID: 22807489]
  56. J Clin Invest. 2002 Dec;110(12):1839-47 [PMID: 12488434]
  57. J Biol Chem. 2002 Oct 18;277(42):39163-8 [PMID: 12147706]

Grants

  1. R01 DK056818/NIDDK NIH HHS
  2. R56 DK056818/NIDDK NIH HHS
  3. DK56818/NIDDK NIH HHS

MeSH Term

Active Transport, Cell Nucleus
Animals
Cell Line
Cell Nucleus
Diabetes Mellitus, Experimental
Forkhead Box Protein O1
Forkhead Transcription Factors
Insulin-Secreting Cells
Male
Mice
Mice, Knockout
Nerve Tissue Proteins
PPAR gamma
Rats
Rats, Zucker
Transcription, Genetic

Chemicals

Forkhead Box Protein O1
Forkhead Transcription Factors
Foxo1 protein, mouse
Nerve Tissue Proteins
PPAR gamma
Foxo1 protein, rat

Word Cloud

Created with Highcharts 10.0.0FoxO1β-cellPPARγtargetisletcompensationfailuregenesratssignalingmetabolicexpressionβ-cellstranscriptionreceptoractivationnondiabeticdiabetesimpairednuclearmolecularmechanismspathwaysdrivefullyresolvedusedvitrovivosystemsshowintegratorstimuliinhibitsthusPdx1glucose-dependentinsulinotropicpolypeptideGIPpyruvatecarboxylaseimportantregulatorsfunctionsurvivalinhibitiongenenormallyrelievedupstreaminducestranslocationnucleuscytoplasmAttestingcentralimportancepathwayenhancedinsulin-resistantmarkedlyreducedinductionInsighthyperglycemiaobtainedconfocalmicroscopypancreassectionsshowedintenseimmunostainingpatterndiabeticcontrastcytoplasmicfindingssuggestFoxO1/PPARγ-mediatednetworkactingcorecomponentadaptationstressresponsecausingexacerbatingPeroxisomeproliferator-activatedγdownstreameffectorsproteinβ-cells:mechanismChromatinImmunoprecipitationChiPGeneExpressionImmunofluorescenceMouseModelsPDX1PancreaticIsletsPyruvateCarboxylaseSignalTransduction

Similar Articles

Cited By