Ecological causes of morphological evolution in the three-spined stickleback.

Rowena Spence, Robert J Wootton, Iain Barber, Mirosław Przybylski, Carl Smith
Author Information
  1. Rowena Spence: School of Biology, University of St. Andrews St. Andrews, KY16 8LB, UK.

Abstract

The central assumption of evolutionary theory is that natural selection drives the adaptation of populations to local environmental conditions, resulting in the evolution of adaptive phenotypes. The three-spined stickleback (Gasterosteus aculeatus) displays remarkable phenotypic variation, offering an unusually tractable model for understanding the ecological mechanisms underpinning adaptive evolutionary change. Using populations on North Uist, Scotland we investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. Dissolved calcium was a significant predictor of plate and spine morph, while predator abundance was not. Stickleback latency to emerge from a refuge varied with morph, with populations with highly reduced plates and spines and high predation risk less bold. Our findings support strong directional selection in three-spined stickleback evolution, driven by multiple selective agents.

Keywords

References

  1. J Fish Biol. 2009 Nov;75(8):1977-99 [PMID: 20738668]
  2. Evolution. 1993 Jun;47(3):906-914 [PMID: 28567888]
  3. Science. 2010 Jan 15;327(5963):302-5 [PMID: 20007865]
  4. Trends Ecol Evol. 2011 Oct;26(10):514-22 [PMID: 21763030]
  5. Evolution. 2004 Apr;58(4):814-24 [PMID: 15154557]
  6. Science. 2008 Oct 10;322(5899):255-7 [PMID: 18755942]
  7. Ecol Evol. 2013 Apr;3(4):961-70 [PMID: 23610637]
  8. Evolution. 1983 Sep;37(5):931-946 [PMID: 28563533]
  9. Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2479-86 [PMID: 20643737]
  10. J Fish Biol. 2009 Nov;75(8):2062-74 [PMID: 20738672]
  11. Evolution. 1981 Jan;35(1):67-74 [PMID: 28563462]
  12. J Evol Biol. 2009 Mar;22(3):544-52 [PMID: 19210595]
  13. Nature. 2001 Dec 20-27;414(6866):901-5 [PMID: 11780061]
  14. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6050-5 [PMID: 15069186]
  15. J Evol Biol. 2012 Oct;25(10):1965-1974 [PMID: 22862551]
  16. Clin Orthop Relat Res. 2011 Aug;469(8):2393-4 [PMID: 21547413]
  17. Science. 2006 Jul 14;313(5784):224-6 [PMID: 16840700]
  18. Evolution. 2009 Jan;63(1):127-38 [PMID: 18803682]
  19. Nature. 2004 Apr 15;428(6984):717-23 [PMID: 15085123]
  20. Proc Biol Sci. 2009 Apr 7;276(1660):1285-93 [PMID: 19129142]
  21. J Hered. 2007 Sep-Oct;98(6):581-6 [PMID: 17693397]
  22. PLoS Biol. 2004 May;2(5):E109 [PMID: 15069472]
  23. J Fish Biol. 2009 Nov;75(8):1919-42 [PMID: 20738666]
  24. Mol Ecol. 2011 Jun;20(12):2483-93 [PMID: 21443674]
  25. Genetica. 2001;112-113:445-61 [PMID: 11838781]
  26. Science. 2005 Mar 25;307(5717):1928-33 [PMID: 15790847]
  27. Trends Ecol Evol. 2001 Jul 1;16(7):372-380 [PMID: 11403870]
  28. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9402-6 [PMID: 9689092]
  29. Evolution. 1992 Aug;46(4):1224-1230 [PMID: 28564400]

Word Cloud

Created with Highcharts 10.0.0evolutionsticklebackselectionpopulationsadaptivethree-spinedpredationcalciumevolutionarynaturaladaptationGasterosteusaculeatusphenotypicmorphselectivecentralassumptiontheorydriveslocalenvironmentalconditionsresultingphenotypesdisplaysremarkablevariationofferingunusuallytractablemodelunderstandingecologicalmechanismsunderpinningchangeUsingNorthUistScotlandinvestigatedrolepressurelimitationmorphologybehaviorDissolvedsignificantpredictorplatespinepredatorabundanceSticklebacklatencyemergerefugevariedhighlyreducedplatesspineshighrisklessboldfindingssupportstrongdirectionaldrivenmultipleagentsEcologicalcausesmorphologicalAdaptationconcentrationnuptialcoloration

Similar Articles

Cited By (23)