A Model-Based fMRI Analysis with Hierarchical Bayesian Parameter Estimation.

Woo-Young Ahn, Adam Krawitz, Woojae Kim, Jerome R Busmeyer, Joshua W Brown
Author Information
  1. Woo-Young Ahn: Indiana University.

Abstract

A recent trend in decision neuroscience is the use of model-based fMRI using mathematical models of cognitive processes. However, most previous model-based fMRI studies have ignored individual differences due to the challenge of obtaining reliable parameter estimates for individual participants. Meanwhile, previous cognitive science studies have demonstrated that hierarchical Bayesian analysis is useful for obtaining reliable parameter estimates in cognitive models while allowing for individual differences. Here we demonstrate the application of hierarchical Bayesian parameter estimation to model-based fMRI using the example of decision making in the Iowa Gambling Task. First we use a simulation study to demonstrate that hierarchical Bayesian analysis outperforms conventional (individual- or group-level) maximum likelihood estimation in recovering true parameters. Then we perform model-based fMRI analyses on experimental data to examine how the fMRI results depend upon the estimation method.

References

  1. Science. 1997 Feb 28;275(5304):1293-5 [PMID: 9036851]
  2. Hum Brain Mapp. 2000 Jul;10(3):120-31 [PMID: 10912591]
  3. Neuropsychologia. 2001;39(4):376-89 [PMID: 11164876]
  4. Neuroimage. 2001 Jan;13(1):210-7 [PMID: 11133323]
  5. Cogn Sci. 2008 Dec;32(8):1248-84 [PMID: 21585453]
  6. Neuroimage. 2003 Jul;19(3):1233-9 [PMID: 12880848]
  7. J Math Psychol. 2010 Feb 1;54(1):28-38 [PMID: 20419064]
  8. J Neurosci. 2008 Nov 19;28(47):12539-45 [PMID: 19020046]
  9. Cogn Sci. 2008 Dec;32(8):1376-402 [PMID: 21585458]
  10. Neuron. 2003 Apr 24;38(2):329-37 [PMID: 12718865]
  11. Psychon Bull Rev. 2005 Jun;12(3):387-402 [PMID: 16235624]
  12. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  13. Neuroimage. 2001 Jan;13(1):218-29 [PMID: 11133324]
  14. Psychol Assess. 2002 Sep;14(3):253-62 [PMID: 12214432]
  15. Neuron. 2003 Apr 24;38(2):339-46 [PMID: 12718866]
  16. Ann N Y Acad Sci. 2007 May;1104:35-53 [PMID: 17416921]
  17. Science. 2004 Apr 16;304(5669):452-4 [PMID: 15087550]
  18. Nature. 2006 Jun 15;441(7095):876-9 [PMID: 16778890]
  19. Nat Neurosci. 2004 Aug;7(8):887-93 [PMID: 15235607]
  20. J Neurosci. 2005 May 11;25(19):4806-12 [PMID: 15888656]
  21. J Neurosci. 1996 Mar 1;16(5):1936-47 [PMID: 8774460]
  22. Clin Neurophysiol. 2003 Jul;114(7):1203-9 [PMID: 12842716]
  23. Cognition. 1994 Apr-Jun;50(1-3):7-15 [PMID: 8039375]

Grants

  1. R03 DA023462/NIDA NIH HHS