Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy.

Lu Wei, Yong Yu, Yihui Shen, Meng C Wang, Wei Min
Author Information
  1. Lu Wei: Department of Chemistry, Columbia University, New York, NY 10027, USA.

Abstract

Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial-temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon-deuterium bonds (C-D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo.

Keywords

References

  1. Nat Protoc. 2011 Feb;6(2):147-57 [PMID: 21293456]
  2. Curr Opin Neurobiol. 2000 Oct;10(5):587-92 [PMID: 11084321]
  3. Nat Protoc. 2008;3(3):505-16 [PMID: 18323819]
  4. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):413-8 [PMID: 22160674]
  5. Cell. 2011 Nov 11;147(4):789-802 [PMID: 22056041]
  6. ACS Chem Neurosci. 2012 Jan 18;3(1):40-49 [PMID: 22347535]
  7. J Am Chem Soc. 2012 Feb 29;134(8):3623-6 [PMID: 22316340]
  8. J Phys Chem Lett. 2011 May 9;2(11):1248-1253 [PMID: 21731798]
  9. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  10. Cold Spring Harb Perspect Biol. 2019 Sep 3;11(9): [PMID: 30082466]
  11. Nature. 2005 Jan 6;433(7021):77-83 [PMID: 15635413]
  12. Chemphyschem. 2012 Mar;13(4):1054-9 [PMID: 22368112]
  13. J Neurosci. 2009 Jan 21;29(3):638-52 [PMID: 19158291]
  14. Nature. 2000 Apr 6;404(6778):604-9 [PMID: 10766243]
  15. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  16. J Biol Chem. 1958 Mar;231(1):533-45 [PMID: 13538989]
  17. Bioorg Med Chem Lett. 2008 Nov 15;18(22):5995-9 [PMID: 18774715]
  18. Science. 2007 Sep 14;317(5844):1563-6 [PMID: 17872448]
  19. Science. 1938 Mar 11;87(2254):221-6 [PMID: 17770403]
  20. Science. 1935 Aug 16;82(2120):156-7 [PMID: 17811948]
  21. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7364-7 [PMID: 17036290]
  22. Nat Rev Mol Cell Biol. 2006 Dec;7(12):952-8 [PMID: 17139335]
  23. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9482-7 [PMID: 16769897]
  24. Nat Neurosci. 2010 Jul;13(7):897-905 [PMID: 20543841]
  25. Nat Methods. 2011 Feb;8(2):135-8 [PMID: 21240281]
  26. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:883-909 [PMID: 20636101]
  27. Science. 2011 Nov 4;334(6056):623-8 [PMID: 22053042]
  28. Nat Chem Biol. 2011 Mar;7(3):137-45 [PMID: 21321552]
  29. Opt Express. 2009 Mar 2;17(5):3651-8 [PMID: 19259205]
  30. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  31. Science. 1994 Feb 11;263(5148):802-5 [PMID: 8303295]
  32. J Biophotonics. 2012 May;5(5-6):387-95 [PMID: 22344721]
  33. Nat Methods. 2011 Jul 28;8(8):638-42 [PMID: 21799498]
  34. Curr Opin Chem Biol. 2011 Dec;15(6):831-7 [PMID: 22055495]
  35. Science. 2001 Nov 2;294(5544):1030-8 [PMID: 11691980]
  36. Annu Rev Biochem. 1998;67:509-44 [PMID: 9759496]
  37. Mol Cell Proteomics. 2002 May;1(5):376-86 [PMID: 12118079]
  38. Nature. 2012 Jan 15;481(7382):520-4 [PMID: 22246323]
  39. Cell. 2010 May 14;141(4):632-44 [PMID: 20434207]
  40. Mol Cell Proteomics. 2012 Mar;11(3):M111.011429 [PMID: 21937730]
  41. Anal Chem. 2008 Dec 15;80(24):9576-82 [PMID: 19006335]

Grants

  1. DP2 EB016573/NIBIB NIH HHS
  2. R01 AG045183/NIA NIH HHS

MeSH Term

HEK293 Cells
Humans
Microscopy
Protein Biosynthesis
Proteins
Spectrum Analysis, Raman

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0cellsimagingnewlyproteinssynthesizedRamanproteometechniquestimulatedSRSmicroscopyincorporationlivenewlivingsystemsresolutionstainingscatteringcoupleddeuterium-labeledaminoacidsproteintotalspatialstableisotopeSynthesiskeystepcentraldogmamolecularbiologymajorbiologicalprocessrespondrapidlyenvironmentalcuesphysiologicalpathologicalconditionsHoweverselectivevisualizationsubcellularprovenratherchallengingdespiteextensiveeffortsalonglinesfluorescenceautoradiographymassspectrometryHereinreportvisualizenascentharnessingemergingmetabolicfirstdemonstrationimagedmammalianhighspatial-temporalwithoutfixationSubcellularcompartmentsfastturnoverHeLaHEK293Tgrownneuritesdifferentiatingneuron-likeN2AclearlyidentifiedviaTechnicallyminimallyperturbativewhereasexogenouscarbon-deuteriumbondsC-Dcell-silentregionhighlysensitivespecificcompatibleMoreoverlabel-freemethodcanreadilygeneratemapsquantitativeratioproteomesThusnonlinearvibrationalwillvaluabletooladvanceunderstandingcomplextemporaldynamicsvivoVibrationalsynthesislabeling

Similar Articles

Cited By