Transcriptional profiling of Drosophila S2 cells in early response to Drosophila C virus.

Fei Zhu, Haojie Ding, Binnian Zhu
Author Information
  1. Fei Zhu: College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China. zhufei@zju.edu.cn

Abstract

BACKGROUND: The innate immune response like phagocytosis, encapsulation and antimicrobial peptide (AMP) production often occur in the early stage of host-pathogen interactions in Drosophila melanogaster. To investigate the Drosophila early immune response to Drosophila C virus, we characterized the DCV infection-response transcriptome of Drosophila Schneider 2 (S2) cells at one hour post inoculation.
METHOD: The total RNA was extracted from treated S2 cells by using Trizol reagent and then analyzed by CapitalBio Corp for Drosophila GeneChip (Affymetrix) assay. Then the results of signaling pathway and protein interaction about these genes were analyzed by MAS 3.0 software.
RESULTS: Most significantly affected genes (656 genes) by DCV infection were regulated as the same way in inactivated DCV treatment, but inactivated white spot syndrome virus (WSSV) showed a different transcriptome. DCV infection up-regulated the expression levels of 275 genes and down-regulated that of 442 genes significantly and some affected genes were related to phagocytosis. DCV infection activated the JAK/STAT pathway by 1 hour post incubation. The Imd pathway was activated and transcriptional induction of antimicrobial peptides (AMPs) from this pathway was enhanced by 1 hour post incubation. But the Toll pathway was not activated like Imd pathway and the expression levels of AMPs from this pathway was reduced. In addition, most pattern-recognition receptors were inhibited and the antiviral RNAi pathway was not activated in the early stage of DCV infection.
CONCLUSIONS: In conclusion, the present study demonstrates that DCV infection may activate phagocytosis, JAK/STAT pathway and Imd pathway in the early host-virus interactions. These results indicate that DCV is capable of activating or inhibiting some immune responses in the host cells and these changes would be vital for virus entry and replication.

References

  1. Dev Cell. 2003 Sep;5(3):441-50 [PMID: 12967563]
  2. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  3. Fish Shellfish Immunol. 2009 May;26(5):685-90 [PMID: 19268545]
  4. PLoS One. 2009 Oct 15;4(10):e7436 [PMID: 19829691]
  5. Nat Immunol. 2005 Sep;6(9):946-53 [PMID: 16086017]
  6. Oncogene. 2003 Sep 25;22(41):6436-44 [PMID: 14508523]
  7. Mol Cell Biol. 2004 Aug;24(15):6676-89 [PMID: 15254235]
  8. Eur J Biochem. 2003 Aug;270(16):3398-407 [PMID: 12899697]
  9. Nat Immunol. 2002 Feb;3(2):121-6 [PMID: 11812988]
  10. Genes Dev. 2006 Nov 1;20(21):2985-95 [PMID: 17079687]
  11. J Fish Dis. 2008 Jan;31(1):1-18 [PMID: 18086030]
  12. Adv Virus Res. 2008;72:227-65 [PMID: 19081493]
  13. Nat Immunol. 2006 Jun;7(6):590-7 [PMID: 16554838]
  14. Trends Immunol. 2005 Apr;26(4):208-14 [PMID: 15797511]
  15. PLoS One. 2010 May 18;5(5):e10678 [PMID: 20502529]
  16. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7257-62 [PMID: 15878994]
  17. Curr Opin Immunol. 2010 Feb;22(1):4-9 [PMID: 20137906]
  18. Nat Rev Immunol. 2008 Feb;8(2):131-41 [PMID: 18219310]
  19. Nat Immunol. 2008 Dec;9(12):1425-32 [PMID: 18953338]
  20. Annu Rev Biochem. 2010;79:803-33 [PMID: 20196649]
  21. Dev Comp Immunol. 2010 Jun;34(6):625-9 [PMID: 20079370]
  22. J Invertebr Pathol. 1999 May;73(3):248-54 [PMID: 10222177]
  23. EMBO J. 2011 Mar 16;30(6):1123-36 [PMID: 21297578]
  24. Curr Opin Immunol. 2009 Feb;21(1):3-9 [PMID: 19223163]
  25. Gene. 2006 Sep 1;379:26-32 [PMID: 16824706]
  26. Nature. 2009 Mar 19;458(7236):346-50 [PMID: 19204732]
  27. Curr Biol. 2001 May 1;11(9):714-8 [PMID: 11369236]
  28. Immunol Rev. 2004 Apr;198:72-82 [PMID: 15199955]
  29. Dev Cell. 2006 Jan;10(1):33-44 [PMID: 16399076]
  30. PLoS Pathog. 2008 Jun 13;4(6):e1000087 [PMID: 18551172]
  31. PLoS One. 2009 Aug 31;4(8):e6838 [PMID: 19718442]
  32. J Gen Virol. 1998 Jan;79 ( Pt 1):191-203 [PMID: 9460942]
  33. Science. 2006 Apr 21;312(5772):452-4 [PMID: 16556799]
  34. Oncogene. 2004 Jun 10;23(27):4754-62 [PMID: 15107833]
  35. Int Immunol. 2010 Mar;22(3):143-8 [PMID: 20089584]
  36. Mol Cell Biol. 2007 Jun;27(12):4578-88 [PMID: 17438142]
  37. J Leukoc Biol. 2001 Nov;70(5):801-11 [PMID: 11698501]
  38. Nat Struct Mol Biol. 2010 May;17(5):547-54 [PMID: 20400949]
  39. Nat Immunol. 2005 Sep;6(9):863-4 [PMID: 16116462]
  40. PLoS One. 2010 Oct 13;5(10):e13359 [PMID: 20967211]
  41. J Gen Virol. 2008 Jun;89(Pt 6):1497-1501 [PMID: 18474566]
  42. Nature. 2003 Nov 6;426(6962):33-8 [PMID: 14603309]

MeSH Term

Animals
Cell Line
Dicistroviridae
Drosophila melanogaster
Gene Expression Profiling
Host-Pathogen Interactions
Microarray Analysis
Oligonucleotide Array Sequence Analysis

Word Cloud

Created with Highcharts 10.0.0pathwayDCVDrosophilagenesearlyinfectionviruscellsactivatedimmuneresponsephagocytosisS2hourpostImdlikeantimicrobialstageinteractionsCtranscriptomeanalyzedresultssignificantlyaffectedinactivatedexpressionlevelsJAK/STAT1incubationAMPsBACKGROUND:innateencapsulationpeptideAMPproductionoftenoccurhost-pathogenmelanogasterinvestigatecharacterizedinfection-responseSchneider2oneinoculationMETHOD:totalRNAextractedtreatedusingTrizolreagentCapitalBioCorpGeneChipAffymetrixassaysignalingproteininteractionMAS30softwareRESULTS:656regulatedwaytreatmentwhitespotsyndromeWSSVshoweddifferentup-regulated275down-regulated442relatedtranscriptionalinductionpeptidesenhancedTollreducedadditionpattern-recognitionreceptorsinhibitedantiviralRNAiCONCLUSIONS:conclusionpresentstudydemonstratesmayactivatehost-virusindicatecapableactivatinginhibitingresponseshostchangesvitalentryreplicationTranscriptionalprofiling

Similar Articles

Cited By