Viability inhibition effect of gambogic acid combined with cisplatin on osteosarcoma cells via mitochondria-independent apoptotic pathway.

Wei Zhao, Chang-Cheng You, Jin-Peng Zhuang, Jia-Ning Zu, Zhi-Yong Chi, Gong-Ping Xu, Jing-Long Yan
Author Information
  1. Wei Zhao: Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China.

Abstract

We previously demonstrated that gambogic acid (GA) is a promising chemotherapeutic compound for human osteosarcoma treatment. The aim of this study was to detect whether the combination of lower-dose GA (0.3 mg/L) and cisplatin (CDDP) (1 mg/L) could perform a synergistic effect on inhibiting tumor in four osteosarcoma cell lines. Our results showed that the combination between GA at lower dose and CDDP significantly exerts a synergistic effect on inhibiting the cellular viability in MG63, HOS, and U2OS cells. In contrast, an antagonistic character was detected in SAOS2 cells exposed to the combined use of lower-dose GA (0.3 mg/L) and CDDP (1 mg/L). Then, analysis of cell cycle showed the combination of both drugs significantly induced the G2/M phase arrest, without any difference relative to GA treatment alone, in MG63 cells. Flow-cytometric analysis of cell apoptosis displayed that the apoptotic rate in the combination group is higher than that in GA treatment alone in MG63, HOS, and U2OS cells. The combined use of both drugs had no effect on mitochondrial membrane potential, but promoted the apoptosis-inducing function through triggering of CDDP in the three cell lines. By measurement of mitochondrial membrane potential, the activity of caspase-3 and the expressions of caspase-8 and caspase-9, it was showed that the apoptosis-promoting effect of the combined use of both drugs could be dependent on the death receptor apoptosis pathway, not dependent on the mitochondria apoptosis mechanism. This research, for the first time, demonstrates that GA could increase the chemotherapeutic effect of CDDP in human osteosarcoma treatment through inducing the cell cycle arrest and promoting cell apoptosis.

References

  1. Oncogene. 2003 Oct 20;22(47):7265-79 [PMID: 14576837]
  2. Life Sci. 2008 Jul 18;83(3-4):103-9 [PMID: 18586278]
  3. Cancer Treat Res. 1993;62:269-77 [PMID: 7682088]
  4. J Biol Chem. 1996 Jan 26;271(4):1841-4 [PMID: 8567626]
  5. Biol Pharm Bull. 2004 Jul;27(7):998-1003 [PMID: 15256729]
  6. Cancer. 2009 Apr 1;115(7):1531-43 [PMID: 19197972]
  7. Cancer Res. 2013 Apr 1;73(7):2271-80 [PMID: 23554447]
  8. J Clin Oncol. 1998 Jul;16(7):2452-8 [PMID: 9667263]
  9. Int J Cancer. 2010 May 1;126(9):2049-66 [PMID: 19711344]
  10. Arch Med Res. 2010 Apr;41(3):162-9 [PMID: 20682173]
  11. Pharmacol Rev. 2006 Sep;58(3):621-81 [PMID: 16968952]
  12. Metabolism. 1991 Jul;40(7):664-71 [PMID: 1651438]
  13. Oncol Rep. 2011 May;25(5):1289-95 [PMID: 21331449]
  14. Cancer Lett. 2007 Dec 8;258(1):80-9 [PMID: 17920764]
  15. Acta Oncol. 1998;37(1):41-8 [PMID: 9572653]
  16. Biochem Pharmacol. 2013 Apr 15;85(8):1077-90 [PMID: 23396090]
  17. World J Gastroenterol. 2005 Jun 28;11(24):3655-9 [PMID: 15968715]
  18. Med Pediatr Oncol. 2002 Dec;39(6):573-80 [PMID: 12376980]
  19. Biochem Biophys Res Commun. 1999 Jun 24;260(1):159-66 [PMID: 10381360]
  20. J Clin Oncol. 2002 Feb 1;20(3):776-90 [PMID: 11821461]
  21. Cancer. 2005 Apr 15;103(8):1551-60 [PMID: 15742333]
  22. Cancer Lett. 2007 Oct 28;256(2):259-66 [PMID: 17693016]
  23. CA Cancer J Clin. 2005 May-Jun;55(3):178-94 [PMID: 15890640]
  24. Mutat Res. 2001 Jul 1;478(1-2):23-43 [PMID: 11406167]
  25. Cancer Chemother Pharmacol. 2000;45(3):199-206 [PMID: 10663637]
  26. FASEB J. 2009 Jun;23(6):1625-37 [PMID: 19141537]
  27. J Surg Oncol. 1972;4(5):482-510 [PMID: 4566220]
  28. Cancer Res. 2010 Jan 15;70(2):440-6 [PMID: 20068163]
  29. Arch Pathol Lab Med. 1998 Apr;122(4):310-9 [PMID: 9648897]
  30. Cancer Lett. 2008 Apr 18;262(2):214-22 [PMID: 18248784]
  31. J Exp Med. 1996 May 1;183(5):1957-64 [PMID: 8642305]

MeSH Term

Apoptosis
Apoptosis Regulatory Proteins
Caspase 8
Caspase 9
Cell Line, Tumor
Cell Survival
Cisplatin
Drug Synergism
G2 Phase Cell Cycle Checkpoints
Humans
Membrane Potential, Mitochondrial
Mitochondria
Osteosarcoma
Signal Transduction
Xanthones

Chemicals

Apoptosis Regulatory Proteins
Xanthones
gambogic acid
Caspase 8
Caspase 9
Cisplatin

Word Cloud

Created with Highcharts 10.0.0GAeffectcellCDDPcellsosteosarcomatreatmentcombinationmg/LcombinedapoptosisshowedMG63usedrugsgambogicacidchemotherapeutichumanlower-dose03cisplatin1synergisticinhibitinglinessignificantlyHOSU2OSanalysiscyclearrestaloneapoptoticmitochondrialmembranepotentialdependentpathwaypreviouslydemonstratedpromisingcompoundaimstudydetectwhetherperformtumorfourresultslowerdoseexertscellularviabilitycontrastantagonisticcharacterdetectedSAOS2exposedinducedG2/MphasewithoutdifferencerelativeFlow-cytometricdisplayedrategrouphigherpromotedapoptosis-inducingfunctiontriggeringthreemeasurementactivitycaspase-3expressionscaspase-8caspase-9apoptosis-promotingdeathreceptormitochondriamechanismresearchfirsttimedemonstratesincreaseinducingpromotingViabilityinhibitionviamitochondria-independent

Similar Articles

Cited By