Socially synchronized circadian oscillators.

Guy Bloch, Erik D Herzog, Joel D Levine, William J Schwartz
Author Information
  1. Guy Bloch: Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.

Abstract

Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.

Keywords

References

  1. J Neurosci. 2009 Nov 18;29(46):14681-6 [PMID: 19923301]
  2. Prog Brain Res. 2012;199:267-280 [PMID: 22877671]
  3. Mol Syst Biol. 2010 Nov 30;6:438 [PMID: 21119632]
  4. J Biol Rhythms. 2009 Feb;24(1):44-54 [PMID: 19227579]
  5. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7664-9 [PMID: 17463091]
  6. Curr Biol. 2005 Jun 21;15(12):R449-50 [PMID: 15964261]
  7. Prog Brain Res. 2012;199:143-162 [PMID: 22877664]
  8. Curr Biol. 2010 Feb 23;20(4):300-9 [PMID: 20153192]
  9. J Exp Biol. 2011 Nov 15;214(Pt 22):3742-50 [PMID: 22031738]
  10. Science. 2010 Oct 15;330(6002):379-85 [PMID: 20947768]
  11. J Biol Rhythms. 2008 Apr;23(2):140-9 [PMID: 18375863]
  12. Curr Biol. 2008 Sep 23;18(18):1384-9 [PMID: 18789689]
  13. Biol Rev Camb Philos Soc. 2004 Aug;79(3):533-56 [PMID: 15366762]
  14. Chronobiol Int. 2009 Apr;26(3):415-29 [PMID: 19360487]
  15. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16493-8 [PMID: 19805326]
  16. Science. 2003 Nov 21;302(5649):1408-12 [PMID: 14631044]
  17. J Insect Physiol. 2010 Jul;56(7):761-73 [PMID: 20116381]
  18. Biophys J. 2005 Jul;89(1):120-9 [PMID: 15849258]
  19. Curr Biol. 2003 Apr 15;13(8):664-8 [PMID: 12699623]
  20. Cold Spring Harb Symp Quant Biol. 2007;72:527-41 [PMID: 18419312]
  21. J Comp Physiol A. 1986 Jun;158(6):827-34 [PMID: 3735167]
  22. Nat Neurosci. 2005 Apr;8(4):476-83 [PMID: 15750589]
  23. Neuron. 1995 Apr;14(4):697-706 [PMID: 7718233]
  24. Neurosci Lett. 1998 Jul 10;250(3):157-60 [PMID: 9708856]
  25. Cell. 2007 May 4;129(3):605-16 [PMID: 17482552]
  26. Biophys J. 2011 Jul 6;101(1):12-20 [PMID: 21723810]
  27. Eur J Neurosci. 2009 Nov;30(9):1802-14 [PMID: 19840112]
  28. J Neurosci. 2005 Nov 30;25(48):11155-64 [PMID: 16319315]
  29. Nature. 1999 Jul 22;400(6742):375-8 [PMID: 10432117]
  30. Nat Neurosci. 2005 Mar;8(3):267-9 [PMID: 15746913]
  31. PLoS One. 2009;4(3):e4976 [PMID: 19305510]
  32. Nature. 2000 Feb 3;403(6769):537-40 [PMID: 10676960]
  33. PLoS Biol. 2010 Oct 12;8(10):e1000513 [PMID: 20967239]
  34. J Biol Rhythms. 2003 Aug;18(4):339-50 [PMID: 12932086]
  35. J Insect Physiol. 2007 Nov;53(11):1179-87 [PMID: 17655856]
  36. Science. 1980 Sep 26;209(4464):1542-5 [PMID: 7433976]
  37. Nat Neurosci. 2002 May;5(5):399-400 [PMID: 11953751]
  38. Nat Neurosci. 1998 Dec;1(8):708-13 [PMID: 10196587]
  39. Curr Biol. 2007 Feb 6;17(3):244-51 [PMID: 17276917]
  40. Biophys J. 2007 Jun 1;92(11):3792-803 [PMID: 17369417]
  41. Curr Biol. 2004 Aug 24;14(16):1481-6 [PMID: 15324665]
  42. Cold Spring Harb Symp Quant Biol. 2007;72:615-21 [PMID: 18419321]
  43. Insect Biochem Mol Biol. 2004 Sep;34(9):879-91 [PMID: 15350608]
  44. Brain Res Bull. 1993;30(5-6):655-69 [PMID: 8457913]
  45. J Biol Rhythms. 2011 Aug;26(4):353-62 [PMID: 21775294]
  46. Science. 2008 May 16;320(5878):949-53 [PMID: 18487196]
  47. J Biol Rhythms. 2004 Feb;19(1):35-46 [PMID: 14964702]
  48. Chronobiol Int. 2003 Mar;20(2):209-21 [PMID: 12723881]
  49. Eur J Neurosci. 2011 May;33(10):1851-65 [PMID: 21488990]
  50. BMC Syst Biol. 2008 Feb 29;2:22 [PMID: 18312618]
  51. J Theor Biol. 1967 Jul;16(1):15-42 [PMID: 6035757]
  52. Oecologia. 2011 Mar;165(3):699-705 [PMID: 20814698]
  53. Curr Biol. 2005 Sep 6;15(17):R714-22 [PMID: 16139204]
  54. J Comp Physiol A. 1988 Apr;162(5):601-10 [PMID: 3373453]
  55. Am J Physiol Regul Integr Comp Physiol. 2004 Mar;286(3):R539-46 [PMID: 14644756]
  56. Integr Physiol Behav Sci. 2002 Apr-Jun;37(2):114-27 [PMID: 12186306]
  57. Curr Opin Neurobiol. 2013 Feb;23(1):17-23 [PMID: 23010098]
  58. Science. 2002 Dec 6;298(5600):2010-2 [PMID: 12471264]
  59. Science. 2005 Jul 22;309(5734):630-3 [PMID: 16040710]
  60. Science. 1990 Feb 23;247(4945):975-8 [PMID: 2305266]
  61. Curr Biol. 2009 Dec 15;19(23):2031-6 [PMID: 19913422]
  62. Cell. 2001 Apr 6;105(1):25-42 [PMID: 11301000]
  63. Curr Biol. 2003 Jan 21;13(2):140-5 [PMID: 12546788]
  64. J Biol Rhythms. 2007 Feb;22(1):14-25 [PMID: 17229921]
  65. PLoS Comput Biol. 2012;8(11):e1002787 [PMID: 23209395]
  66. Curr Biol. 2008 Sep 23;18(18):1373-83 [PMID: 18789691]
  67. Proc Biol Sci. 2012 Jun 22;279(1737):2417-25 [PMID: 22298851]
  68. Neuron. 2013 Jul 10;79(1):54-68 [PMID: 23849197]
  69. J Biol Rhythms. 2012 Feb;27(1):12-24 [PMID: 22306970]
  70. Nature. 1996 Aug 29;382(6594):810-3 [PMID: 8752274]
  71. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15994-9 [PMID: 14671328]
  72. PLoS Comput Biol. 2007 Apr 13;3(4):e68 [PMID: 17432930]
  73. J Neurosci. 2010 Sep 15;30(37):12517-25 [PMID: 20844146]
  74. Curr Opin Neurobiol. 2003 Dec;13(6):765-9 [PMID: 14662380]
  75. Chronobiol Int. 2011 Jul;28(6):497-508 [PMID: 21797778]
  76. J Neurosci. 1999 Jul 1;19(13):5574-85 [PMID: 10377364]
  77. Curr Biol. 2006 Mar 21;16(6):599-605 [PMID: 16546085]
  78. FASEB J. 2007 Aug;21(10):2304-11 [PMID: 17360847]
  79. Phys Rev Lett. 1988 Nov 14;61(20):2380-2383 [PMID: 10039097]
  80. J Comp Physiol B. 1988;158(2):151-6 [PMID: 3170823]
  81. Behav Res Methods. 2009 Aug;41(3):782-6 [PMID: 19587192]
  82. Nature. 2009 Oct 15;461(7266):987-91 [PMID: 19829381]
  83. Cell. 1997 Dec 12;91(6):855-60 [PMID: 9413994]
  84. Can J Zool. 1980 Aug;58(8):1399-403 [PMID: 7427825]
  85. PLoS Comput Biol. 2012;8(9):e1002697 [PMID: 23028293]
  86. Curr Biol. 2007 Mar 6;17(5):468-73 [PMID: 17320387]

Grants

  1. R01 GM094109/NIGMS NIH HHS
  2. R01 063104./PHS HHS
  3. R01 096873/PHS HHS
  4. /CIHR

MeSH Term

Animals
Bees
Biological Clocks
Brain
Cell Communication
Circadian Rhythm
Drosophila
Humans
Locomotion
Organ Size
Rats
Signal Transduction
Suprachiasmatic Nucleus

Word Cloud

Created with Highcharts 10.0.0circadianrhythmsnaturalmechanismslivesocialsynchronizationsynchronizedhoneybeecomplexlevelorganizationsuprachiasmaticnucleusoscillatorsDailyphysiologybehaviourgovernedendogenoustimekeepingmechanism'clock'alternationenvironmentallightdarknesssynchronizesentrainsday-nightcycleunderlyinginvestigatedusingsinglyhousedanimalslaboratoryspeciesordinarilylivesseclusionhabitatsinteractindividualscolonieshighlydevelopedstructuresrequiringtemporalSocialcuesmaythuscriticaladaptivefunctionsystemelucidatingroleresponsibleprovenelusivehighlightthreemodelsystemsnowappliedunderstandingbiologysociallyoscillators:fruitflypowerfularraymoleculargenetictoolssocietycleardivisionlabourdifferentbiologicalrodentsitebrain'sclocknetworkmutuallycoupledsingle-cellAnalyses'group'willlikelygenerateultimatelycomprehensiveviewclockscontributionfitnessnatureSociallyDrosophilacouplingentrainment

Similar Articles

Cited By