A functionally guided approach to the morphometry of occipitotemporal regions in developmental dyslexia: evidence for differential effects in boys and girls.

Irene Altarelli, Karla Monzalvo, Stéphanie Iannuzzi, Joel Fluss, Catherine Billard, Franck Ramus, Ghislaine Dehaene-Lambertz
Author Information
  1. Irene Altarelli: Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, EHESS, CNRS, 75230 Paris Cedex 05, France. irene.altarelli@ens.fr

Abstract

Developmental dyslexia is a learning disability that specifically affects reading acquisition. Cortical anomalies and gray matter volume differences in various temporal regions have been reported in dyslexic subjects compared with controls. However, consistency between studies is lacking. In the present experiments, we focused our structural analyses on the ventral occipitotemporal regions, defined by their functional response to visual categories. We applied a subject-by-subject functionally guided approach on a total of 76 participants (31 dyslexic children). Cortical thickness was estimated for each participant around his/her peak of specific functional activation to visual words, faces, or places. Results from two independent datasets showed a reduction in thickness in dyslexic children compared with controls in the region responsive to words, in the left hemisphere. Additionally, a gender-by-diagnosis interaction was observed at the same location, due to differences in girls only. To avoid the potential confound of reading level, we also contrasted dyslexic and control children matched for reading performance, and we observed a similar difference, although in a smaller extent of cortex. The present study thus provides the first account of a focal cortical thickness reduction in dyslexia in the subregion of ventral occipitotemporal cortex specifically responsive to visual words, when age, gender, and reading performance are taken into account.

References

  1. Brain. 2005 Oct;128(Pt 10):2453-61 [PMID: 15975942]
  2. Neurosci Lett. 2008 Jun 13;438(1):80-4 [PMID: 18456405]
  3. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 [PMID: 17360506]
  4. Neuroscientist. 2009 Dec;15(6):599-610 [PMID: 19700741]
  5. J Child Psychol Psychiatry. 2005 Apr;46(4):373-84 [PMID: 15819646]
  6. Neurology. 2004 Aug 24;63(4):742-5 [PMID: 15326259]
  7. Neuroimage. 2007 Jul 15;36(4):1065-73 [PMID: 17513132]
  8. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  9. Trends Cogn Sci. 2011 Jun;15(6):254-62 [PMID: 21592844]
  10. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 [PMID: 10984517]
  11. Brain. 2007 Dec;130(Pt 12):3200-10 [PMID: 17728359]
  12. Ann Neurol. 1985 Aug;18(2):222-33 [PMID: 4037763]
  13. Hum Brain Mapp. 2008 May;29(5):613-25 [PMID: 17636558]
  14. Nat Neurosci. 2007 Apr;10(4):512-22 [PMID: 17351637]
  15. J Neurosci. 2004 Sep 22;24(38):8223-31 [PMID: 15385605]
  16. Neuroimage. 2011 Aug 1;57(3):742-9 [PMID: 20884362]
  17. Neuroimage. 2012 May 15;61(1):258-74 [PMID: 22387166]
  18. Curr Opin Neurobiol. 2013 Feb;23(1):37-42 [PMID: 23040541]
  19. Cereb Cortex. 1999 Jan-Feb;9(1):27-34 [PMID: 10022493]
  20. Mol Psychiatry. 2011 Apr;16(4):365-82 [PMID: 20956978]
  21. Trends Cogn Sci. 2011 Jun;15(6):246-53 [PMID: 21549634]
  22. J Neurosci. 2009 Feb 18;29(7):2205-11 [PMID: 19228973]
  23. Brain Struct Funct. 2009 Oct;213(6):511-23 [PMID: 19618210]
  24. Dyslexia. 2006 Feb;12(1):21-9 [PMID: 16512171]
  25. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2156-61 [PMID: 22308323]
  26. Neuroimage. 2012 Jan 16;59(2):1369-81 [PMID: 21875671]
  27. Brain Struct Funct. 2013 Mar;218(2):511-26 [PMID: 22488096]
  28. Ann Neurol. 1990 Dec;28(6):727-38 [PMID: 2285260]
  29. Neuroimage. 2011 Jun 1;56(3):1735-42 [PMID: 21338695]
  30. J Int Neuropsychol Soc. 2000 May;6(4):433-42 [PMID: 10902412]
  31. Neurosci Lett. 2003 Feb 6;337(2):65-8 [PMID: 12527389]
  32. Hum Brain Mapp. 2013 Nov;34(11):3055-65 [PMID: 22711189]
  33. Science. 2010 Dec 3;330(6009):1359-64 [PMID: 21071632]
  34. PLoS One. 2012;7(8):e43122 [PMID: 22916214]
  35. Biol Psychiatry. 2002 Jul 15;52(2):101-10 [PMID: 12114001]

MeSH Term

Brain Mapping
Child
Dyslexia
Female
Humans
Male
Occipital Lobe
Photic Stimulation
Sex Characteristics
Temporal Lobe

Word Cloud

Created with Highcharts 10.0.0readingdyslexicregionsoccipitotemporalvisualchildrenthicknesswordsdyslexiaspecificallyCorticaldifferencescomparedcontrolspresentventralfunctionalfunctionallyguidedapproachreductionresponsiveobservedgirlsperformancecortexaccountDevelopmentallearningdisabilityaffectsacquisitionanomaliesgraymattervolumevarioustemporalreportedsubjectsHoweverconsistencystudieslackingexperimentsfocusedstructuralanalysesdefinedresponsecategoriesappliedsubject-by-subjecttotal76participants31estimatedparticipantaroundhis/herpeakspecificactivationfacesplacesResultstwoindependentdatasetsshowedregionlefthemisphereAdditionallygender-by-diagnosisinteractionlocationdueavoidpotentialconfoundlevelalsocontrastedcontrolmatchedsimilardifferencealthoughsmallerextentstudythusprovidesfirstfocalcorticalsubregionagegendertakenmorphometrydevelopmentaldyslexia:evidencedifferentialeffectsboys

Similar Articles

Cited By