Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest.

Yu Ting Wu, Tesfaye Wubet, Stefan Trogisch, Sabine Both, Thomas Scholten, Helge Bruelheide, François Buscot
Author Information
  1. Yu Ting Wu: UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany ; Chair of Soil Ecology, Institute of Biology, University of Leipzig, Leipzig, Germany.

Abstract

Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10-40 yrs; Medium: 40-80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.

References

  1. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  2. New Phytol. 2002 Dec;156(3):527-535 [PMID: 33873568]
  3. Ecology. 2009 Mar;90(3):663-74 [PMID: 19341137]
  4. Science. 2001 Oct 26;294(5543):804-8 [PMID: 11679658]
  5. Oecologia. 2001 Oct;129(2):169-178 [PMID: 28547594]
  6. New Phytol. 2005 Jun;166(3):1011-23 [PMID: 15869659]
  7. Mycorrhiza. 2007 Jun;17(4):271-278 [PMID: 17443354]
  8. New Phytol. 2008;178(1):167-176 [PMID: 18194145]
  9. New Phytol. 2001 Feb;149(2):311-325 [PMID: 33874626]
  10. Science. 2006 Jan 27;311(5760):527-31 [PMID: 16439661]
  11. New Phytol. 2007;174(2):230-233 [PMID: 17388883]
  12. New Phytol. 2010 Sep;187(4):1124-1134 [PMID: 20561206]
  13. Ecol Lett. 2006 Oct;9(10):1127-35 [PMID: 16972876]
  14. New Phytol. 2010 Jan;185(2):529-42 [PMID: 19878464]
  15. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  16. Ecol Lett. 2006 Oct;9(10):1146-56 [PMID: 16972878]
  17. Mycorrhiza. 2012 Aug;22(6):461-70 [PMID: 22138969]
  18. ISME J. 2010 Apr;4(4):465-71 [PMID: 19956273]
  19. New Phytol. 2009 Oct;184(2):424-437 [PMID: 19558424]
  20. Mol Ecol. 1993 Apr;2(2):113-8 [PMID: 8180733]
  21. Mycorrhiza. 2007 Jul;17(5):415-428 [PMID: 17334790]
  22. Mol Ecol. 2010 Mar;19 Suppl 1:41-53 [PMID: 20331769]
  23. New Phytol. 2007;174(2):430-440 [PMID: 17388905]
  24. Microb Ecol. 2006 Jul;52(1):114-26 [PMID: 16699911]
  25. New Phytol. 2010 Oct;188(1):291-301 [PMID: 20636324]
  26. Appl Environ Microbiol. 2007 Aug;73(15):4867-73 [PMID: 17575001]
  27. PLoS One. 2011;6(11):e27949 [PMID: 22114729]
  28. Nature. 2005 Sep 15;437(7057):376-80 [PMID: 16056220]
  29. PLoS One. 2012;7(10):e47500 [PMID: 23094057]
  30. New Phytol. 2009 Oct;184(2):449-456 [PMID: 19703112]
  31. Ecol Lett. 2007 Jun;10(6):522-38 [PMID: 17498151]
  32. Mycorrhiza. 2010 Apr;20(4):217-63 [PMID: 20191371]
  33. BMC Res Notes. 2010 Jan 11;3:3 [PMID: 20180949]
  34. FEMS Microbiol Lett. 2005 Jun 1;247(1):91-100 [PMID: 15927752]
  35. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  36. New Phytol. 2012 Jan;193(2):465-73 [PMID: 21988714]
  37. ISME J. 2007 Aug;1(4):283-90 [PMID: 18043639]
  38. Appl Environ Microbiol. 2009 Dec;75(24):7639-48 [PMID: 19854915]
  39. New Phytol. 2003 Sep;159(3):775-783 [PMID: 33873609]
  40. New Phytol. 2003 Jul;159(1):153-165 [PMID: 33873690]

MeSH Term

Altitude
Biodiversity
China
Classification
Computational Biology
Conservation of Natural Resources
DNA Barcoding, Taxonomic
DNA, Fungal
Forests
Fungi
Plants
Soil Microbiology
Time Factors

Chemicals

DNA, Fungal

Word Cloud

Created with Highcharts 10.0.0fungalcommunitycompositiondiversitysoilforestageyrscommunitiesForestplantFungalfactorsdifferentsubtropicalstudyplotsthreeclassesSoilectomycorrhizalCompositionmainlyrelatedvegetationHoweverrelativecontributiondriversremainslargelyunexploredespeciallyecosystemsstudiedsoilssampled12comparativerepresentingYoung:10-40Medium:40-80Old:≥80GutianshanNationalNatureReserveSouth-easternChinaassessedemployingITSrDNApyrotagsequencingMembersBasidiomycotaAscomycotadominated22putativefamiliesRussulaceaeThelephoraceaeabundanttaxaAnalysissimilarityshowedsignificantlydifferedamongclasselevationorganiccarbonSOCimportantshapingfoundsignificantcorrelationtaxonomicfunctionalgrouplevelsincludingstrongrelationshipnon-ectomycorrhizalresultssuggestforestsspeciesmaindriverAgePlantSpeciesDetermineCommunityChineseSubtropical

Similar Articles

Cited By