Developmental changes in the spatial organization of neurons in the neocortex of humans and common chimpanzees.

Kate Teffer, Daniel P Buxhoeveden, Cheryl D Stimpson, Archibald J Fobbs, Steven J Schapiro, Wallace B Baze, Mark J McArthur, William D Hopkins, Patrick R Hof, Chet C Sherwood, Katerina Semendeferi
Author Information
  1. Kate Teffer: Anthropology Department, University of California, San Diego, California, 92093.

Abstract

In adult humans the prefrontal cortex possesses wider minicolumns and more neuropil space than other cortical regions. These aspects of prefrontal cortex architecture, furthermore, are increased in comparison to chimpanzees and other great apes. In order to determine the developmental appearance of this human cortical specialization, we examined the spatial organization of neurons in four cortical regions (frontal pole [Brodmann's area 10], primary motor [area 4], primary somatosensory [area 3b], and prestriate visual cortex [area 18]) in chimpanzees and humans from birth to approximately the time of adolescence (11 years of age). Horizontal spacing distance (HSD) and gray level ratio (GLR) of layer III neurons were measured in Nissl-stained sections. In both human and chimpanzee area 10, HSD was significantly higher in the postweaning specimens compared to the preweaning ones. No significant age-related differences were seen in the other regions in either species. In concert with other recent studies, the current findings suggest that there is a relatively slower maturation of area 10 in both humans and chimpanzees as compared to other cortical regions, and that further refinement of the spatial organization of neurons within this prefrontal area in humans takes place after the postweaning periods included here.

Keywords

References

  1. Trends Neurosci. 1995 Sep;18(9):383-8 [PMID: 7482803]
  2. Neuroscience. 2006 Dec 28;143(4):1041-50 [PMID: 17049176]
  3. Nature. 2005 Sep 1;437(7055):69-87 [PMID: 16136131]
  4. J Comp Neurol. 1996 Feb 05;365(2):232-55 [PMID: 8822167]
  5. Coll Antropol. 2008 Jan;32 Suppl 1:161-9 [PMID: 18405077]
  6. Curr Opin Neurobiol. 2013 Jun;23(3):443-9 [PMID: 23414685]
  7. Acta Neuropathol. 2006 Sep;112(3):287-303 [PMID: 16819561]
  8. J Hum Evol. 2005 Dec;49(6):762-76 [PMID: 16226789]
  9. J Neurocytol. 2002 Mar-Jun;31(3-5):265-76 [PMID: 12815246]
  10. Cereb Cortex. 2001 Jun;11(6):558-71 [PMID: 11375917]
  11. Cereb Cortex. 2013 Oct;23(10):2429-36 [PMID: 22875862]
  12. Proc Natl Acad Sci U S A. 2012 Jun 26;109 Suppl 1:10709-16 [PMID: 22723367]
  13. Science. 1986 Apr 11;232(4747):232-5 [PMID: 3952506]
  14. Brain Pathol. 2007 Oct;17(4):422-33 [PMID: 17919128]
  15. Nature. 1996 Aug 29;382(6594):805-7 [PMID: 8752272]
  16. Curr Biol. 2011 Aug 23;21(16):1397-402 [PMID: 21835623]
  17. Anat Embryol (Berl). 2000 Dec;202(6):443-74 [PMID: 11131014]
  18. Brain Res. 1984 Mar;315(1):117-24 [PMID: 6722572]
  19. J Hirnforsch. 1964;7:269-82 [PMID: 14227452]
  20. J Comp Neurol. 1997 Oct 20;387(2):167-78 [PMID: 9336221]
  21. Genome Res. 2012 Apr;22(4):611-22 [PMID: 22300767]
  22. Dev Neurosci. 2005;27(5):277-87 [PMID: 16137985]
  23. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16480-5 [PMID: 23012402]
  24. J Anat. 2008 Apr;212(4):394-425 [PMID: 18380863]
  25. Am J Hum Biol. 2009 Jul-Aug;21(4):567-77 [PMID: 19326459]
  26. Anim Cogn. 2003 Dec;6(4):213-23 [PMID: 12898285]
  27. Cereb Cortex. 2008 Apr;18(4):915-29 [PMID: 17652464]
  28. Anat Embryol (Berl). 1996 Jul;194(1):23-36 [PMID: 8800420]
  29. Cereb Cortex. 2005 Jan;15(1):64-73 [PMID: 15238445]
  30. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13281-6 [PMID: 21788513]
  31. Exp Brain Res. 2000 Jul;133(1):66-70 [PMID: 10933211]
  32. Am J Primatol. 2004 Mar;62(3):139-64 [PMID: 15027089]
  33. Neuroimage. 1999 Jul;10(1):63-83 [PMID: 10385582]
  34. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 [PMID: 15148381]
  35. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13135-40 [PMID: 20624964]
  36. Acta Anat (Basel). 1961;47:74-111 [PMID: 14497900]
  37. Am J Phys Anthropol. 2001 Aug;115(4):361-71 [PMID: 11471134]
  38. J Comp Neurol. 2008 Sep 1;510(1):117-28 [PMID: 18612968]
  39. Cereb Cortex. 1997 Jul-Aug;7(5):432-52 [PMID: 9261573]
  40. J Comp Neurol. 2012 Sep 1;520(13):2917-29 [PMID: 22350926]
  41. Anat Rec A Discov Mol Cell Evol Biol. 2006 Jan;288(1):26-35 [PMID: 16342214]
  42. Int J Psychophysiol. 2000 Mar;35(2-3):155-64 [PMID: 10677644]
  43. Int J Dev Neurosci. 2006 Aug;24(5):335-41 [PMID: 16814973]
  44. J Hum Evol. 2006 Aug;51(2):207-12 [PMID: 16824583]
  45. Brain. 2002 May;125(Pt 5):935-51 [PMID: 11960884]
  46. Brain Behav Evol. 2001 Jun;57(6):349-58 [PMID: 11713389]
  47. Cereb Cortex. 2011 Jul;21(7):1485-97 [PMID: 21098620]
  48. Vis Neurosci. 1998 Nov-Dec;15(6):1007-27 [PMID: 9839966]
  49. Science. 1986 Feb 21;231(4740):840-3 [PMID: 3945811]
  50. Science. 2000 Sep 15;289(5486):1946-9 [PMID: 10988077]
  51. Pediatr Dev Pathol. 1999 May-Jun;2(3):244-59 [PMID: 10191348]
  52. Am J Phys Anthropol. 2001 Mar;114(3):224-41 [PMID: 11241188]
  53. Neuroscientist. 2002 Aug;8(4):335-46 [PMID: 12194502]
  54. Neuroimaging Clin N Am. 2001 May;11(2):151-69, vii [PMID: 11489732]
  55. Brain. 1997 Apr;120 ( Pt 4):701-22 [PMID: 9153131]
  56. Am J Phys Anthropol. 2012 Feb;147(2):312-8 [PMID: 22190338]
  57. J Comp Neurol. 1986 Oct 15;252(3):415-22 [PMID: 3793985]
  58. Neuroscientist. 2008 Feb;14(1):101-18 [PMID: 17971507]
  59. J Comp Neurol. 1997 Oct 6;386(4):661-80 [PMID: 9378859]
  60. Cell. 2012 May 11;149(4):912-22 [PMID: 22559943]
  61. Proc Natl Acad Sci U S A. 2013 Jun 18;110 Suppl 2:10395-401 [PMID: 23754422]
  62. Science. 2012 Mar 30;335(6076):1634-6 [PMID: 22461613]
  63. Am J Phys Anthropol. 2000 Nov;113(3):435-50 [PMID: 11042542]
  64. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10918-25 [PMID: 21690340]
  65. Neuroimage. 2000 Jan;11(1):66-84 [PMID: 10686118]
  66. Phys Life Rev. 2011 Dec;8(4):410-37 [PMID: 22018722]
  67. J Comp Neurol. 1995 Nov 6;362(1):109-33 [PMID: 8576425]

Grants

  1. R01 NS042867/NINDS NIH HHS
  2. R01 NS073134/NINDS NIH HHS
  3. NS042867/NINDS NIH HHS

MeSH Term

Animals
Child
Child, Preschool
Female
Humans
Infant
Infant, Newborn
Male
Neocortex
Neurons
Pan troglodytes

Word Cloud

Created with Highcharts 10.0.0humanscorticalregionschimpanzeesneuronsareaprefrontalcortexspatialorganization[areahumanprimaryHSD10postweaningcomparedadultpossesseswiderminicolumnsneuropilspaceaspectsarchitecturefurthermoreincreasedcomparisongreatapesorderdeterminedevelopmentalappearancespecializationexaminedfourfrontalpole[Brodmann's10]motor4]somatosensory3b]prestriatevisual18]birthapproximatelytimeadolescence11yearsageHorizontalspacingdistancegraylevelratioGLRlayerIIImeasuredNissl-stainedsectionschimpanzeesignificantlyhigherspecimenspreweaningonessignificantage-relateddifferencesseeneitherspeciesconcertrecentstudiescurrentfindingssuggestrelativelyslowermaturationrefinementwithintakesplaceperiodsincludedhereDevelopmentalchangesneocortexcommonbiologicalanthropologycomparativeneuroanatomyevolutionminicolumn

Similar Articles

Cited By