Effects of two elongation factor 1A isoforms on the formation of gephyrin clusters at inhibitory synapses in hippocampal neurons.

Michal Becker, Jochen Kuhse, Joachim Kirsch
Author Information
  1. Michal Becker: Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.

Abstract

Postsynaptic receptor scaffold proteins play an important role for concentrating receptor molecules in postsynaptic membranes of central nervous system synapses. In particular, clustering of glycine receptors and different types of GABAA-receptors depends on the scaffold protein gephyrin, which is thought to anchor these receptors to the cytoskeleton. Eukaryotic elongation factor 1A (eEF1A) is a component of the protein synthesis machinery. In addition, it binds and bundles actin and was shown to interact with microtubules. Therefore, it might be involved in regulating the cytoskeletal dynamics in neurons and thereby modulate receptor cluster formation and/or maintenance. In this study, we demonstrate partial colocalization of gephyrin and F-actin along filamentous structures in rat hippocampal neurons. Overexpression of eEF1A in cultured hippocampal neurons results in a significant increase in number, size and density of postsynaptic gephyrin clusters after 21 days in vitro. These findings suggest that eEF1A contributes to the morphology of postsynaptic membrane specializations at inhibitory synapses.

References

  1. Biochim Biophys Acta. 1989 Jan 18;988(1):73-97 [PMID: 2535787]
  2. J Neurosci. 2006 Jul 5;26(27):7143-6 [PMID: 16822969]
  3. J Neurosci. 2005 Jun 15;25(24):5833-43 [PMID: 15958750]
  4. J Biol Chem. 1998 Apr 24;273(17):10288-95 [PMID: 9553081]
  5. J Neurosci. 2006 Apr 26;26(17):4586-95 [PMID: 16641238]
  6. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7224-7 [PMID: 6095276]
  7. J Biol Chem. 1990 Oct 15;265(29):17967-73 [PMID: 2211674]
  8. Neuron. 2004 Sep 30;44(1):59-73 [PMID: 15450160]
  9. J Biol Chem. 1990 Feb 5;265(4):2286-91 [PMID: 2404981]
  10. Trends Biochem Sci. 1995 May;20(5):169-70 [PMID: 7610475]
  11. J Neurosci. 1993 Mar;13(3):1010-21 [PMID: 8095065]
  12. J Neurophysiol. 2004 Feb;91(2):1036-49 [PMID: 12968009]
  13. Mol Cells. 1999 Dec 31;9(6):631-7 [PMID: 10672930]
  14. J Struct Biol. 1992 Nov-Dec;109(3):248-54 [PMID: 1296758]
  15. J Biochem. 1996 Apr;119(4):791-8 [PMID: 8743583]
  16. Bioessays. 1988 May;8(5):157-61 [PMID: 3044358]
  17. J Neurosci. 1995 Jun;15(6):4148-56 [PMID: 7790902]
  18. Biochem Biophys Res Commun. 1998 Feb 4;243(1):86-9 [PMID: 9473484]
  19. Mol Cells. 2008 Jun 30;25(4):538-44 [PMID: 18443410]
  20. Neurochem Res. 2006 Jul;31(7):975-88 [PMID: 16845586]
  21. Genetics. 2001 Apr;157(4):1425-36 [PMID: 11290701]
  22. Mol Cell Neurosci. 2006 Feb;31(2):376-86 [PMID: 16376568]
  23. J Cell Biol. 1996 Dec;135(5):1309-21 [PMID: 8947553]
  24. J Neurosci. 2006 Aug 16;26(33):8502-11 [PMID: 16914675]
  25. J Biol Chem. 1985 Mar 10;260(5):3084-9 [PMID: 3882705]
  26. Eur J Biochem. 1980 Sep;110(2):555-63 [PMID: 7192214]
  27. Clin Cancer Res. 2007 Oct 1;13(19):5889-96 [PMID: 17908984]
  28. J Cell Biol. 1996 Nov;135(4):953-63 [PMID: 8922379]
  29. J Biol Chem. 1991 Nov 25;266(33):22242-5 [PMID: 1657993]
  30. J Biol Chem. 2010 Jul 9;285(28):21209-13 [PMID: 20444696]
  31. J Neurosci. 1999 Nov 1;19(21):9289-97 [PMID: 10531433]
  32. Neuron. 2008 Sep 25;59(6):902-13 [PMID: 18817730]
  33. Nat Neurosci. 2000 Jan;3(1):22-9 [PMID: 10607391]
  34. J Neurophysiol. 2002 Jan;87(1):640-4 [PMID: 11784780]
  35. Int J Biochem Cell Biol. 2008;40(1):63-71 [PMID: 17936057]
  36. J Neurosci. 2003 Sep 10;23(23):8330-9 [PMID: 12967995]
  37. Mol Biol Cell. 2002 Feb;13(2):579-92 [PMID: 11854414]
  38. Nature. 1993 Dec 23-30;366(6457):745-8 [PMID: 8264797]
  39. J Biochem. 2006 Sep;140(3):393-9 [PMID: 16877446]
  40. Trends Cell Biol. 1996 May;6(5):168-71 [PMID: 15157465]
  41. J Biol Chem. 2007 Dec 28;282(52):37783-93 [PMID: 17965018]
  42. Neuron. 2008 Jul 31;59(2):261-73 [PMID: 18667154]
  43. J Neurosci. 2002 Jul 1;22(13):5393-402 [PMID: 12097491]
  44. Mol Cell Neurosci. 2003 Jun;23(2):279-91 [PMID: 12812759]
  45. J Biol Chem. 2002 May 31;277(22):19697-702 [PMID: 11886851]
  46. Science. 1998 Nov 13;282(5392):1321-4 [PMID: 9812897]

MeSH Term

Animals
Carrier Proteins
Cells, Cultured
Hippocampus
Membrane Proteins
Neurons
Peptide Elongation Factor 1
Protein Isoforms
Rats
Rats, Wistar
Synapses

Chemicals

Carrier Proteins
Membrane Proteins
Peptide Elongation Factor 1
Protein Isoforms
gephyrin

Word Cloud

Created with Highcharts 10.0.0gephyrinneuronsreceptorpostsynapticsynapseseEF1Ascaffoldreceptorsproteinelongationfactor1AformationhippocampalclustersinhibitoryPostsynapticproteinsplayimportantroleconcentratingmoleculesmembranescentralnervoussystemparticularclusteringglycinedifferenttypesGABAA-receptorsdependsthoughtanchorcytoskeletonEukaryoticcomponentsynthesismachineryadditionbindsbundlesactinshowninteractmicrotubulesThereforemightinvolvedregulatingcytoskeletaldynamicstherebymodulateclusterand/ormaintenancestudydemonstratepartialcolocalizationF-actinalongfilamentousstructuresrat hippocampalOverexpressionculturedresultssignificantincreasenumbersizedensity21 daysvitrofindingssuggestcontributesmorphologymembranespecializationsEffectstwoisoforms

Similar Articles

Cited By