Computational identification of receptive fields.

Tatyana O Sharpee
Author Information
  1. Tatyana O Sharpee: Computational Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. sharpee@salk.edu

Abstract

Natural stimuli elicit robust responses of neurons throughout sensory pathways, and therefore their use provides unique opportunities for understanding sensory coding. This review describes statistical methods that can be used to characterize neural feature selectivity, focusing on the case of natural stimuli. First, we discuss how such classic methods as reverse correlation/spike-triggered average and spike-triggered covariance can be generalized for use with natural stimuli to find the multiple relevant stimulus features that affect the responses of a given neuron. Second, ways to characterize neural feature selectivity while assuming that the neural responses exhibit a certain type of invariance, such as position invariance for visual neurons, are discussed. Finally, we discuss methods that do not require one to make an assumption of invariance and instead can determine the type of invariance by analyzing relationships between the multiple stimulus features that affect the neural responses.

References

  1. Adv Neural Inf Process Syst. 2012 Dec;25:3113-3121 [PMID: 26273181]
  2. J Neurophysiol. 1999 Nov;82(5):2490-502 [PMID: 10561421]
  3. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407-11 [PMID: 329282]
  4. J Neurophysiol. 1953 Jan;16(1):37-68 [PMID: 13035466]
  5. J Neurosci. 2000 Nov 1;20(21):8188-98 [PMID: 11050142]
  6. J Neurosci. 2000 Mar 15;20(6):2315-31 [PMID: 10704507]
  7. Neural Comput. 2012 Sep;24(9):2384-421 [PMID: 22734487]
  8. J Neurosci. 2008 Feb 20;28(8):1929-42 [PMID: 18287509]
  9. J Neurophysiol. 1998 Aug;80(2):554-71 [PMID: 9705450]
  10. Nat Neurosci. 2005 Dec;8(12):1647-50 [PMID: 16306892]
  11. J Vis. 2006 Jul 17;6(4):484-507 [PMID: 16889482]
  12. Network. 2003 Aug;14(3):437-64 [PMID: 12938766]
  13. J Gen Physiol. 1979 Dec;74(6):671-89 [PMID: 231636]
  14. Neuron. 2003 Nov 13;40(4):823-33 [PMID: 14622585]
  15. J Physiol Paris. 1996;90(3-4):205-9 [PMID: 9116668]
  16. J Opt Soc Am A. 1985 Feb;2(2):284-99 [PMID: 3973762]
  17. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3394-411 [PMID: 14714819]
  18. PLoS Comput Biol. 2013;9(3):e1002922 [PMID: 23516339]
  19. Nat Rev Neurosci. 2007 Jul;8(7):522-35 [PMID: 17585305]
  20. Neural Comput. 2009 Mar;21(3):619-87 [PMID: 18928364]
  21. Biophys J. 1980 Mar;29(3):459-83 [PMID: 7295867]
  22. PLoS Comput Biol. 2011 Oct;7(10):e1002219 [PMID: 22046110]
  23. J Vis. 2004 Oct 21;4(10):860-78 [PMID: 15595891]
  24. Neural Comput. 2000 Jul;12(7):1531-52 [PMID: 10935917]
  25. Network. 2011;22(1-4):45-73 [PMID: 21780916]
  26. Neural Comput. 2013 Jul;25(7):1870-90 [PMID: 23607565]
  27. Neuropharmacology. 1998 Apr-May;37(4-5):501-11 [PMID: 9704991]
  28. J Neurophysiol. 2006 Nov;96(5):2724-38 [PMID: 16914609]
  29. J Comput Neurosci. 2009 Apr;26(2):203-18 [PMID: 18679785]
  30. J Physiol. 1968 Mar;195(1):215-43 [PMID: 4966457]
  31. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3490-5 [PMID: 19218435]
  32. J Neurophysiol. 2011 Oct;106(4):1841-61 [PMID: 21753019]
  33. J Vis. 2002;2(1):12-24 [PMID: 12678594]
  34. Phys Rev Lett. 1994 Aug 8;73(6):814-817 [PMID: 10057546]
  35. Vision Res. 1990;30(11):1689-701 [PMID: 2288084]
  36. J Vis. 2006 May 16;6(4):441-74 [PMID: 16889480]
  37. Vision Res. 1997 Dec;37(23):3385-98 [PMID: 9425551]
  38. Curr Opin Neurobiol. 2003 Apr;13(2):144-9 [PMID: 12744966]
  39. Annu Rev Neurosci. 2001;24:1193-216 [PMID: 11520932]
  40. J Neurosci. 2012 Jul 18;32(29):10053-62 [PMID: 22815519]
  41. J Neurophysiol. 2008 May;99(5):2496-509 [PMID: 18353910]
  42. Nat Neurosci. 2007 Oct;10(10):1313-21 [PMID: 17873872]
  43. PLoS Comput Biol. 2011 Oct;7(10):e1002249 [PMID: 22046122]
  44. PLoS Comput Biol. 2011 Mar;7(3):e1001111 [PMID: 21455284]
  45. J Neurosci. 2006 Aug 9;26(32):8254-66 [PMID: 16899720]
  46. PLoS Comput Biol. 2009 May;5(5):e1000379 [PMID: 19424506]
  47. Nature. 2006 Apr 20;440(7087):1007-12 [PMID: 16625187]
  48. J Neurophysiol. 2006 Jan;95(1):379-400 [PMID: 16148274]
  49. Comput Intell Neurosci. 2012;2012:209590 [PMID: 23227035]
  50. Nat Neurosci. 2006 Apr;9(4):552-61 [PMID: 16520737]
  51. Nat Neurosci. 2005 Dec;8(12):1643-6 [PMID: 16306891]
  52. Network. 2010;21(1-2):35-90 [PMID: 20735338]
  53. Prog Brain Res. 2007;165:493-507 [PMID: 17925266]
  54. Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9739-46 [PMID: 21571645]
  55. Pac Symp Biocomput. 1998;:621-32 [PMID: 9697217]
  56. IEEE Trans Biomed Eng. 1968 Jul;15(3):169-79 [PMID: 5667803]
  57. J Neurophysiol. 1987 Mar;57(3):835-68 [PMID: 3559704]
  58. Neuron. 1999 Mar;22(3):435-50 [PMID: 10197525]
  59. Neural Comput. 2004 Feb;16(2):223-50 [PMID: 15006095]
  60. Network. 2001 Aug;12(3):289-316 [PMID: 11563531]
  61. J Opt Soc Am A. 1987 Dec;4(12):2379-94 [PMID: 3430225]
  62. Nature. 2001 Mar 22;410(6827):466-70 [PMID: 11260713]
  63. Proc Biol Sci. 1998 Mar 7;265(1394):359-66 [PMID: 9523437]
  64. J Neurosci. 2008 Jan 9;28(2):446-55 [PMID: 18184787]
  65. Network. 2001 May;12(2):199-213 [PMID: 11405422]
  66. Stat Med. 2007 Sep 20;26(21):4009-31 [PMID: 17597484]
  67. J Comput Neurosci. 2013 Feb;34(1):137-61 [PMID: 22798148]
  68. J Neurosci. 1996 Nov 15;16(22):7376-89 [PMID: 8929444]
  69. Curr Opin Cell Biol. 2003 Apr;15(2):221-31 [PMID: 12648679]
  70. PLoS One. 2013 Nov 08;8(11):e71959 [PMID: 24250780]
  71. Network. 2009;20(2):49-68 [PMID: 19568981]
  72. Neuron. 2005 Jun 16;46(6):945-56 [PMID: 15953422]
  73. J Neurosci. 1998 Aug 1;18(15):5908-27 [PMID: 9671678]
  74. J Neurosci. 1997 Nov 1;17(21):8621-44 [PMID: 9334433]
  75. Vis Neurosci. 1999 Jan-Feb;16(1):15-34 [PMID: 10022475]
  76. J Physiol Paris. 2003 Jul-Nov;97(4-6):453-74 [PMID: 15242657]

Grants

  1. K25 MH068904/NIMH NIH HHS
  2. R01 EY019493/NEI NIH HHS
  3. R01EY019493/NEI NIH HHS

MeSH Term

Action Potentials
Animals
Computer Simulation
Humans
Models, Neurological
Neurons
Visual Fields
Visual Pathways

Word Cloud

Created with Highcharts 10.0.0responsesneuralinvariancestimulimethodscanneuronssensoryusecharacterizefeatureselectivitynaturaldiscussmultiplestimulusfeaturesaffecttypeNaturalelicitrobustthroughoutpathwaysthereforeprovidesuniqueopportunitiesunderstandingcodingreviewdescribesstatisticalusedfocusingcaseFirstclassicreversecorrelation/spike-triggeredaveragespike-triggeredcovariancegeneralizedfindrelevantgivenneuronSecondwaysassumingexhibitcertainpositionvisualdiscussedFinallyrequireonemakeassumptioninsteaddetermineanalyzingrelationshipsComputationalidentificationreceptivefields

Similar Articles

Cited By