Patient-tailored prioritization for a pediatric care decision support system through machine learning.

Jeffrey G Klann, Vibha Anand, Stephen M Downs
Author Information
  1. Jeffrey G Klann: Laboratory of Computer Science, Massachusetts General Hospital, Boston, Massachusetts, USA.

Abstract

OBJECTIVE: Over 8 years, we have developed an innovative computer decision support system that improves appropriate delivery of pediatric screening and care. This system employs a guidelines evaluation engine using data from the electronic health record (EHR) and input from patients and caregivers. Because guideline recommendations typically exceed the scope of one visit, the engine uses a static prioritization scheme to select recommendations. Here we extend an earlier idea to create patient-tailored prioritization.
MATERIALS AND METHODS: We used Bayesian structure learning to build networks of association among previously collected data from our decision support system. Using area under the receiver-operating characteristic curve (AUC) as a measure of discriminability (a sine qua non for expected value calculations needed for prioritization), we performed a structural analysis of variables with high AUC on a test set. Our source data included 177 variables for 29 402 patients.
RESULTS: The method produced a network model containing 78 screening questions and anticipatory guidance (107 variables total). Average AUC was 0.65, which is sufficient for prioritization depending on factors such as population prevalence. Structure analysis of seven highly predictive variables reveals both face-validity (related nodes are connected) and non-intuitive relationships.
DISCUSSION: We demonstrate the ability of a Bayesian structure learning method to 'phenotype the population' seen in our primary care pediatric clinics. The resulting network can be used to produce patient-tailored posterior probabilities that can be used to prioritize content based on the patient's current circumstances.
CONCLUSIONS: This study demonstrates the feasibility of EHR-driven population phenotyping for patient-tailored prioritization of pediatric preventive care services.

Keywords

References

  1. AMIA Annu Symp Proc. 2008 Nov 06;:6-10 [PMID: 18998893]
  2. N Engl J Med. 2007 Oct 11;357(15):1515-23 [PMID: 17928599]
  3. Pediatrics. 2012 May;129(5):e1275-81 [PMID: 22508925]
  4. N Engl J Med. 1976 Dec 9;295(24):1351-5 [PMID: 988482]
  5. Methods Inf Med. 1991 Oct;30(4):241-55 [PMID: 1762578]
  6. Methods Inf Med. 1992 Jun;31(2):106-16 [PMID: 1635462]
  7. Proc AMIA Symp. 2002;:215-9 [PMID: 12463818]
  8. N Engl J Med. 2001 Sep 27;345(13):965-70 [PMID: 11575289]
  9. Am J Prev Med. 2001 Jul;21(1):1-9 [PMID: 11418251]
  10. AMIA Annu Symp Proc. 2003;:21-5 [PMID: 14728126]
  11. AMIA Annu Symp Proc. 2008 Nov 06;:166-70 [PMID: 18998823]
  12. Radiology. 1982 Apr;143(1):29-36 [PMID: 7063747]
  13. AMIA Annu Symp Proc. 2005;:211-5 [PMID: 16779032]
  14. PLoS One. 2014 Jun 10;9(6):e98679 [PMID: 24914678]
  15. J Am Med Inform Assoc. 2013 Mar-Apr;20(2):311-6 [PMID: 22744960]
  16. AMIA Annu Symp Proc. 2006;:214-8 [PMID: 17238334]
  17. J Am Med Inform Assoc. 2011 Jul-Aug;18(4):485-90 [PMID: 21672910]
  18. J Biomed Inform. 2010 Dec;43(6):891-901 [PMID: 20884377]
  19. Proc AMIA Symp. 2000;:200-4 [PMID: 11079873]
  20. JAMA. 1998 Oct 21;280(15):1339-46 [PMID: 9794315]
  21. Pediatrics. 2006 Oct;118(4):e964-78 [PMID: 17015516]
  22. Stud Health Technol Inform. 2004;107(Pt 1):187-91 [PMID: 15360800]
  23. Arch Pediatr Adolesc Med. 1995 Apr;149(4):374-9 [PMID: 7704164]
  24. Int J Med Inform. 2001 Nov;64(1):15-37 [PMID: 11673100]

Grants

  1. 5T15 LM007117-14/NLM NIH HHS
  2. R01LM010031/NLM NIH HHS
  3. R01HS017939/AHRQ HHS
  4. R01 HS017939/AHRQ HHS
  5. R01 LM010031/NLM NIH HHS
  6. T15 LM007117/NLM NIH HHS
  7. R01 HS018453/AHRQ HHS
  8. 1R01HS018453/AHRQ HHS

MeSH Term

Area Under Curve
Artificial Intelligence
Bayes Theorem
Data Mining
Decision Support Systems, Clinical
Electronic Health Records
Feasibility Studies
Humans
Patient-Centered Care
Pediatrics
Phenotype
Practice Guidelines as Topic
Preventive Health Services
ROC Curve

Word Cloud

Created with Highcharts 10.0.0prioritizationdecisionsupportsystempediatriccaredatavariablespatient-tailoredusedBayesianlearningAUCanalysisscreeningenginepatientsrecommendationsstructuremethodnetworkpopulationcanOBJECTIVE:8yearsdevelopedinnovativecomputerimprovesappropriatedeliveryemploysguidelinesevaluationusingelectronichealthrecordEHRinputcaregiversguidelinetypicallyexceedscopeonevisitusesstaticschemeselectextendearlierideacreateMATERIALSANDMETHODS:buildnetworksassociationamongpreviouslycollectedUsingareareceiver-operatingcharacteristiccurvemeasurediscriminabilitysinequanonexpectedvaluecalculationsneededperformedstructuralhightestsetsourceincluded17729402RESULTS:producedmodelcontaining78questionsanticipatoryguidance107totalAverage065sufficientdependingfactorsprevalenceStructuresevenhighlypredictiverevealsface-validityrelatednodesconnectednon-intuitiverelationshipsDISCUSSION:demonstrateability'phenotypepopulation'seenprimaryclinicsresultingproduceposteriorprobabilitiesprioritizecontentbasedpatient'scurrentcircumstancesCONCLUSIONS:studydemonstratesfeasibilityEHR-drivenphenotypingpreventiveservicesPatient-tailoredmachineclinicalminingpediatricsphenotype

Similar Articles

Cited By