Recurrent network for multisensory integration-identification of common sources of audiovisual stimuli.

Itsuki Yamashita, Kentaro Katahira, Yasuhiko Igarashi, Kazuo Okanoya, Masato Okada
Author Information
  1. Itsuki Yamashita: Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba, Japan.

Abstract

We perceive our surrounding environment by using different sense organs. However, it is not clear how the brain estimates information from our surroundings from the multisensory stimuli it receives. While Bayesian inference provides a normative account of the computational principle at work in the brain, it does not provide information on how the nervous system actually implements the computation. To provide an insight into how the neural dynamics are related to multisensory integration, we constructed a recurrent network model that can implement computations related to multisensory integration. Our model not only extracts information from noisy neural activity patterns, it also estimates a causal structure; i.e., it can infer whether the different stimuli came from the same source or different sources. We show that our model can reproduce the results of psychophysical experiments on spatial unity and localization bias which indicate that a shift occurs in the perceived position of a stimulus through the effect of another simultaneous stimulus. The experimental data have been reproduced in previous studies using Bayesian models. By comparing the Bayesian model and our neural network model, we investigated how the Bayesian prior is represented in neural circuits.

Keywords

References

  1. Curr Opin Neurobiol. 1994 Aug;4(4):569-79 [PMID: 7812147]
  2. Nat Neurosci. 1999 Aug;2(8):740-5 [PMID: 10412064]
  3. Biol Cybern. 1977 Aug 3;27(2):77-87 [PMID: 911931]
  4. Exp Brain Res. 2004 Sep;158(2):252-8 [PMID: 15112119]
  5. PLoS One. 2007 Sep 26;2(9):e943 [PMID: 17895984]
  6. J Physiol. 1962 Jan;160:106-54 [PMID: 14449617]
  7. J Cogn Neurosci. 2003 Jan 1;15(1):20-9 [PMID: 12590840]
  8. Neural Comput. 2013 Jan;25(1):1-45 [PMID: 23020108]
  9. Curr Biol. 2004 Feb 3;14(3):257-62 [PMID: 14761661]
  10. Neural Comput. 1998 Feb 15;10(2):373-401 [PMID: 9472487]
  11. Nat Neurosci. 2006 Nov;9(11):1432-8 [PMID: 17057707]
  12. J Neurosci. 1997 Nov 1;17(21):8621-44 [PMID: 9334433]
  13. J Neurosci. 1996 Feb 15;16(4):1486-510 [PMID: 8778300]
  14. Psychol Sci. 2000 Sep;11(5):353-9 [PMID: 11228904]
  15. Neural Comput. 2007 Dec;19(12):3335-55 [PMID: 17970656]
  16. Behav Brain Res. 2001 Jun;121(1-2):69-79 [PMID: 11275285]
  17. J Physiol Paris. 2003 Jul-Nov;97(4-6):683-94 [PMID: 15242674]

Word Cloud

Created with Highcharts 10.0.0multisensoryneuralmodelBayesiannetworkdifferentinformationstimuliintegrationcanusingbrainestimatesinferenceproviderelatedrecurrentsourcesspatialstimulusperceivesurroundingenvironmentsenseorgansHoweverclearsurroundingsreceivesprovidesnormativeaccountcomputationalprincipleworknervoussystemactuallyimplementscomputationinsightdynamicsconstructedimplementcomputationsextractsnoisyactivitypatternsalsocausalstructureieinferwhethercamesourceshowreproduceresultspsychophysicalexperimentsunitylocalizationbiasindicateshiftoccursperceivedpositioneffectanothersimultaneousexperimentaldatareproducedpreviousstudiesmodelscomparinginvestigatedpriorrepresentedcircuitsRecurrentintegration-identificationcommonaudiovisualMexican-hattypeinteractioncausalityorientation

Similar Articles

Cited By