Context-dependent competition in a model gut bacterial community.

Eric J de Muinck, Nils Chr Stenseth, Daniel Sachse, Jan Vander Roost, Kjersti S Rønningen, Knut Rudi, Pål Trosvik
Author Information
  1. Eric J de Muinck: Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.

Abstract

Understanding the ecological processes that generate complex community structures may provide insight into the establishment and maintenance of a normal microbial community in the human gastrointestinal tract, yet very little is known about how biotic interactions influence community dynamics in this system. Here, we use natural strains of Escherichia coli and a simplified model microbiota to demonstrate that the colonization process on the strain level can be context dependent, in the sense that the outcome of intra-specific competition may be determined by the composition of the background community. These results are consistent with previous models for competition between organisms where one competitor has adapted to low resource environments whereas the other is optimized for rapid reproduction when resources are abundant. The genomic profiles of E. coli strains representing these differing ecological strategies provide clues for deciphering the genetic underpinnings of niche adaptation within a single species. Our findings extend the role of ecological theory in understanding microbial systems and the conceptual toolbox for describing microbial community dynamics. There are few, if any, concrete examples of context-dependent competition on a single trophic level. However, this phenomenon can have potentially dramatic effects on which bacteria will successfully establish and persist in the gastrointestinal system, and the principle should be equally applicable to other microbial ecosystems.

References

  1. Science. 2012 Jun 8;336(6086):1255-62 [PMID: 22674335]
  2. BMC Genomics. 2013 Feb 05;14:81 [PMID: 23384204]
  3. Infect Immun. 2004 Mar;72(3):1666-76 [PMID: 14977974]
  4. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  5. Appl Environ Microbiol. 1991 Jul;57(7):2033-8 [PMID: 16348524]
  6. PLoS Genet. 2009 Jan;5(1):e1000344 [PMID: 19165319]
  7. PLoS One. 2010 Feb 05;5(2):e9085 [PMID: 20140211]
  8. BMC Genomics. 2011 Jun 15;12:316 [PMID: 21676223]
  9. Environ Microbiol. 2010 Oct;12(10):2677-87 [PMID: 20482738]
  10. ISME J. 2007 Sep;1(5):403-18 [PMID: 18043660]
  11. Gut Liver. 2010 Sep;4(3):295-306 [PMID: 20981205]
  12. Appl Environ Microbiol. 2005 Sep;71(9):5254-9 [PMID: 16151111]
  13. Science. 2001 Jul 27;293(5530):643-50 [PMID: 11474100]
  14. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7200-5 [PMID: 21482770]
  15. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7427-32 [PMID: 15123798]
  16. Nature. 2006 Dec 21;444(7122):1027-31 [PMID: 17183312]
  17. Adv Microb Physiol. 1971;6:147-217 [PMID: 4950180]
  18. Science. 1981 Aug 28;213(4511):972-9 [PMID: 7268409]
  19. J Appl Bacteriol. 1989 May;66(5):365-78 [PMID: 2666378]
  20. J Bacteriol. 2008 Oct;190(20):6881-93 [PMID: 18676672]
  21. ISME J. 2010 Feb;4(2):151-8 [PMID: 19710708]
  22. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):996-1001 [PMID: 11792842]
  23. Antonie Van Leeuwenhoek. 1993;63(3-4):299-313 [PMID: 8279826]
  24. Microb Ecol. 2010 Nov;60(4):708-20 [PMID: 20623278]
  25. Gut. 2007 May;56(5):669-75 [PMID: 17028128]
  26. Clin Exp Allergy. 2011 Nov;41(11):1545-54 [PMID: 21749499]
  27. Nat Rev Microbiol. 2010 Jan;8(1):15-25 [PMID: 19946288]
  28. Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents [PMID: 15353570]
  29. Appl Environ Microbiol. 2007 Aug;73(15):4975-83 [PMID: 17575003]
  30. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  31. Nat Rev Microbiol. 2010 Mar;8(3):207-17 [PMID: 20157339]
  32. Science. 2012 Jun 8;336(6086):1325-9 [PMID: 22582016]
  33. PLoS Genet. 2010 Jan 15;6(1):e1000808 [PMID: 20090831]
  34. Mol Biol Evol. 1998 Jul;15(7):789-97 [PMID: 9656481]
  35. Environ Microbiol Rep. 2011 Jun;3(3):352-9 [PMID: 23761281]
  36. Lett Appl Microbiol. 2012 May;54(5):447-54 [PMID: 22385401]
  37. Science. 1972 Mar 17;175(4027):1272-4 [PMID: 4551427]
  38. BMC Genomics. 2010 Oct 11;11:555 [PMID: 20937090]
  39. Nature. 2011 Jun 15;474(7351):327-36 [PMID: 21677749]
  40. Curr Biol. 2012 Oct 9;22(19):1845-50 [PMID: 22959348]
  41. Microbiol Rev. 1979 Mar;43(1):42-58 [PMID: 379577]
  42. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5 [PMID: 17699621]
  43. Nat Rev Microbiol. 2005 May;3(5):383-96 [PMID: 15864263]
  44. Nestle Nutr Workshop Ser Pediatr Program. 2008;62:13-29; discussion 29-33 [PMID: 18626190]
  45. Gut. 2007 May;56(5):610-2 [PMID: 17440180]
  46. ISME J. 2011 Jan;5(1):82-91 [PMID: 20613793]
  47. Trends Ecol Evol. 2000 Jun;15(6):243-247 [PMID: 10802550]
  48. Inflamm Bowel Dis. 2009 Nov;15(11):1737-45 [PMID: 19462430]
  49. Nature. 2007 Nov 15;450(7168):411-4 [PMID: 18004383]

MeSH Term

Escherichia coli
Gastrointestinal Tract
Genome, Bacterial
Humans
Infant, Newborn
Microbiota
Models, Biological

Word Cloud

Created with Highcharts 10.0.0communitymicrobialcompetitionecologicalmayprovidegastrointestinaldynamicssystemstrainscolimodellevelcansingleUnderstandingprocessesgeneratecomplexstructuresinsightestablishmentmaintenancenormalhumantractyetlittleknownbioticinteractionsinfluenceusenaturalEscherichiasimplifiedmicrobiotademonstratecolonizationprocessstraincontextdependentsenseoutcomeintra-specificdeterminedcompositionbackgroundresultsconsistentpreviousmodelsorganismsonecompetitoradaptedlowresourceenvironmentswhereasoptimizedrapidreproductionresourcesabundantgenomicprofilesErepresentingdifferingstrategiescluesdecipheringgeneticunderpinningsnicheadaptationwithinspeciesfindingsextendroletheoryunderstandingsystemsconceptualtoolboxdescribingconcreteexamplescontext-dependenttrophicHoweverphenomenonpotentiallydramaticeffectsbacteriawillsuccessfullyestablishpersistprincipleequallyapplicableecosystemsContext-dependentgutbacterial

Similar Articles

Cited By