Spiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models.

Sinae Kim, David B Dahl, Marina Vannucci
Author Information
  1. Sinae Kim: Department of Biostatistics, University of Michigan, Ann Arbor, MI, sinae@umich.edu.

Abstract

We propose a Bayesian method for multiple hypothesis testing in random effects models that uses Dirichlet process (DP) priors for a nonparametric treatment of the random effects distribution. We consider a general model formulation which accommodates a variety of multiple treatment conditions. A key feature of our method is the use of a product of spiked distributions, i.e., mixtures of a point-mass and continuous distributions, as the centering distribution for the DP prior. Adopting these spiked centering priors readily accommodates sharp null hypotheses and allows for the estimation of the posterior probabilities of such hypotheses. Dirichlet process mixture models naturally borrow information across objects through model-based clustering while inference on single hypotheses averages over clustering uncertainty. We demonstrate via a simulation study that our method yields increased sensitivity in multiple hypothesis testing and produces a lower proportion of false discoveries than other competitive methods. While our modeling framework is general, here we present an application in the context of gene expression from microarray experiments. In our application, the modeling framework allows simultaneous inference on the parameters governing differential expression and inference on the clustering of genes. We use experimental data on the transcriptional response to oxidative stress in mouse heart muscle and compare the results from our procedure with existing nonparametric Bayesian methods that provide only a ranking of the genes by their evidence for differential expression.

Keywords

References

  1. Biom J. 2008 Oct;50(5):716-44 [PMID: 18932138]
  2. Biometrics. 2006 Dec;62(4):1089-98 [PMID: 17156283]
  3. Bioinformatics. 2002 Sep;18(9):1194-206 [PMID: 12217911]
  4. Bioinformatics. 2001 Jun;17(6):509-19 [PMID: 11395427]
  5. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  6. Epidemiology. 2007 Mar;18(2):199-207 [PMID: 17272963]
  7. Biostatistics. 2007 Apr;8(2):414-32 [PMID: 16928955]
  8. Biostatistics. 2004 Apr;5(2):155-76 [PMID: 15054023]
  9. J Comput Biol. 2001;8(1):37-52 [PMID: 11339905]
  10. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]

Grants

  1. R01 HG003319/NHGRI NIH HHS

Word Cloud

Created with Highcharts 10.0.0BayesianmultipleDirichletclusteringexpressionmethodhypothesistestingprocesspriorshypothesesinferencedifferentialrandomeffectsmodelsDPnonparametrictreatmentdistributiongeneralaccommodatesusespikeddistributionscenteringpriorallowsmixturemodel-basedmethodsmodelingframeworkapplicationgenemicroarraygenesproposeusesconsidermodelformulationvarietyconditionskeyfeatureproductiemixturespoint-masscontinuousAdoptingreadilysharpnullestimationposteriorprobabilitiesnaturallyborrowinformationacrossobjectssingleaveragesuncertaintydemonstrateviasimulationstudyyieldsincreasedsensitivityproduceslowerproportionfalsediscoveriescompetitivepresentcontextexperimentssimultaneousparametersgoverningexperimentaldatatranscriptionalresponseoxidativestressmouseheartmusclecompareresultsprocedureexistingproviderankingevidenceSpikedProcessPriorMultipleHypothesisTestingRandomEffectsModelsnonparametricsDNA

Similar Articles

Cited By