Social regulation of maternal traits in nest-founding bumble bee (Bombus terrestris) queens.

S Hollis Woodard, Guy Bloch, Mark R Band, Gene E Robinson
Author Information
  1. S Hollis Woodard: Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA. euglossine@gmail.com

Abstract

During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens reduce their feeding of larvae and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment with the bumble bee Bombus terrestris, we tested the hypothesis that workers regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage nest-founding queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg laying, and likewise, late-stage nest-founding queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behaviors were negatively correlated. We used Agilent microarrays designed from B. terrestris brain expressed sequenced tags (ESTs) to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect being much stronger in late-stage founding queens. This study provides new insights into how the transition from feeding brood to specialization on reproduction in queen bumble bees is regulated during the nest initiation phase of the colony cycle.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4226-31 [PMID: 18337502]
  2. Proc Biol Sci. 2012 Dec 22;279(1749):4929-38 [PMID: 23097509]
  3. PLoS One. 2009 Jul 29;4(7):e6408 [PMID: 19641619]
  4. Proc Biol Sci. 2008 Feb 22;275(1633):393-402 [PMID: 18055387]
  5. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jan;189(1):47-51 [PMID: 12548429]
  6. Proc Biol Sci. 2010 Jul 22;277(1691):2139-48 [PMID: 20236980]
  7. BMC Genomics. 2008 Mar 18;9:131 [PMID: 18366674]
  8. Brain Res Mol Brain Res. 2002 Mar 28;99(2):92-101 [PMID: 11978400]
  9. Science. 2002 Apr 26;296(5568):741-4 [PMID: 11976457]
  10. Proc Biol Sci. 1999 Dec 22;266(1437):2465-9 [PMID: 10693816]
  11. Annu Rev Entomol. 1992;37:637-65 [PMID: 1539941]
  12. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14519-25 [PMID: 14573707]
  13. J Neurosci. 2010 Jan 27;30(4):1301-13 [PMID: 20107057]
  14. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7472-7 [PMID: 21482769]
  15. Annu Rev Neurosci. 2001;24:1283-309 [PMID: 11520934]
  16. Science. 2003 Oct 10;302(5643):296-9 [PMID: 14551438]
  17. Proc Biol Sci. 2011 Dec 7;278(1724):3510-6 [PMID: 21508036]
  18. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  19. Genes Brain Behav. 2009 Apr;8(3):309-19 [PMID: 19220482]
  20. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):662-7 [PMID: 21199943]
  21. J Biol Chem. 2007 Oct 26;282(43):31349-57 [PMID: 17635913]
  22. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  23. J Insect Physiol. 2005 Jul;51(7):811-23 [PMID: 15885700]
  24. PLoS One. 2011;6(6):e21086 [PMID: 21695157]
  25. J Neurosci. 2004 Sep 8;24(36):7869-78 [PMID: 15356199]
  26. J Comp Physiol A. 1999 May;184(5):481-8 [PMID: 10377981]
  27. Nat Rev Genet. 2005 Apr;6(4):257-70 [PMID: 15761469]
  28. Behav Brain Res. 2007 May 16;179(2):314-20 [PMID: 17374406]
  29. J Neurosci. 2007 Mar 21;27(12):3295-304 [PMID: 17376990]
  30. Nature. 2006 Oct 26;443(7114):931-49 [PMID: 17073008]
  31. PLoS Biol. 2005 Nov;3(11):e363 [PMID: 16216088]
  32. Annu Rev Entomol. 2006;51:581-608 [PMID: 16332224]
  33. Genes Brain Behav. 2010 Mar 1;9(2):203-12 [PMID: 20015341]
  34. Bioessays. 2007 Apr;29(4):334-43 [PMID: 17373656]
  35. J Exp Biol. 2006 Mar;209(Pt 6):1044-51 [PMID: 16513930]
  36. J Exp Biol. 2002 Sep;205(Pt 17):2567-81 [PMID: 12151363]
  37. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7128-33 [PMID: 17438290]
  38. Bioinformatics. 2006 Nov 15;22(22):2825-7 [PMID: 16982708]
  39. Eur J Neurosci. 2003 Mar;17(5):963-70 [PMID: 12653972]
  40. FEBS Lett. 2004 Aug 27;573(1-3):83-92 [PMID: 15327980]
  41. Methods. 2003 Dec;31(4):265-73 [PMID: 14597310]
  42. FASEB J. 2007 Aug;21(10):2304-11 [PMID: 17360847]
  43. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15400-5 [PMID: 19706434]

Grants

  1. T32 DC006612/NIDCD NIH HHS
  2. PHS2T32DC006612/NIDCD NIH HHS

MeSH Term

Analysis of Variance
Animals
Bees
Brain
Feeding Behavior
Female
Gene Expression Regulation
Hierarchy, Social
Male
Nesting Behavior
Oviposition
Social Behavior

Word Cloud

Created with Highcharts 10.0.0queensnest-foundingworkersbumblephasebeefeedingcolonybehaviorfoundingnestreproductiontransitionterrestrishypothesisbrood-feedingbraincyclematernalemergencereducesocialBombusbroodspecializationfoundnestsincreaselate-stageegg-layingmicroarraysgeneexpressioninitiationundergostrikingchangescareEarlypriorreproductivealsoprovisionfeedoffspringHoweverlaterlarvaebecomespecializedsynchronizedassumetasksiblingsUsingmanipulationexperimenttestedregulateConsistentearly-stageprematurelyaddedegglayinglikewisedecreaseremovedbehaviorsnegativelycorrelatedusedAgilentdesignedBexpressedsequencedtagsESTsexploresecondalterevidencealteredpresenceeffectmuchstrongerstudyprovidesnewinsightsqueenbeesregulatedSocialregulationtraitsgenomicsevolution

Similar Articles

Cited By