Lactate uptake by the injured human brain: evidence from an arteriovenous gradient and cerebral microdialysis study.

Ibrahim Jalloh, Adel Helmy, Richard J Shannon, Clare N Gallagher, David K Menon, Keri L H Carpenter, Peter J Hutchinson
Author Information
  1. Ibrahim Jalloh: 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .

Abstract

Lactate has been regarded as a waste product of anaerobic metabolism of glucose. Evidence also suggests, however, that the brain may use lactate as an alternative fuel. Our aim was to determine the extent of lactate uptake from the circulation into the brain after traumatic brain injury (TBI) and to compare it with levels of lactate in the brain extracellular fluid. We recruited 19 patients with diffuse TBI, monitored with cerebral microdialysis and jugular bulb catheters. Serial arteriovenous (AV) concentration differences of glucose and lactate were calculated from arterial and jugular blood samples, providing a measure of net uptake or export by the brain. Microdialysis was used to measure brain extracellular glucose and lactate. In 17/19 patients studied for 5 days post-injury, there were periods of net lactate uptake into the brain, most frequently on day 3 after injury. Brain microdialysate lactate had a median (interquartile range [IQR]) concentration of 2.5 (1.5-3.2) mmol/L during lactate uptake and 2.2 (1.7-3.0) mmol/L during lactate export. Lactate uptake into the brain occurred at a median (IQR) arterial lactate concentration of 1.6 (1.0-2.2) mmol/L. Lactate uptake was associated with significantly higher AV difference in glucose values with a median (IQR) of 0.4 (0.03-0.7) mmol/L during uptake and 0.1 (-0.2-0.3) mmol/L during lactate export (Mann-Whitney U p=0.003). Despite relatively high brain lactate compared with arterial lactate concentrations, the brain appears to up-regulate lactate transport into the brain after TBI. This may serve to satisfy greater demands for energy substrate from the brain after TBI.

References

  1. Brain. 2011 Feb;134(Pt 2):484-94 [PMID: 21247930]
  2. J Neurochem. 2005 Jul;94(1):1-14 [PMID: 15953344]
  3. J Cereb Blood Flow Metab. 2011 Feb;31(2):658-70 [PMID: 20717122]
  4. J Cereb Blood Flow Metab. 2006 Jun;26(6):731-50 [PMID: 16395281]
  5. Exp Neurol. 2009 Aug;218(2):363-70 [PMID: 19481077]
  6. Brain. 2009 Oct;132(Pt 10):2839-49 [PMID: 19700417]
  7. FASEB J. 2008 Oct;22(10):3443-9 [PMID: 18653766]
  8. Neurosurgery. 2000 Sep;47(3):701-9; discussion 709-10 [PMID: 10981758]
  9. J Neurosurg. 2000 Jul;93(1):37-43 [PMID: 10883903]
  10. J Neurochem. 2003 Sep;86(6):1468-76 [PMID: 12950455]
  11. Anaesthesia. 1998 Jul;53(7):627-33 [PMID: 9771169]
  12. Brain Res. 2000 Apr 10;861(2):281-7 [PMID: 10760489]
  13. J Cereb Blood Flow Metab. 2007 Sep;27(9):1593-602 [PMID: 17293841]
  14. Life Sci. 1992;51(12):973-85 [PMID: 1325588]
  15. Acta Neurochir (Wien). 2009 Jan;151(1):51-61; discussion 61 [PMID: 19099177]
  16. Acta Neurochir (Wien). 2007;149(9):919-27; discussion 927 [PMID: 17660938]
  17. J Neurotrauma. 2005 Oct;22(10):1052-65 [PMID: 16238483]
  18. J Cereb Blood Flow Metab. 2009 Jun;29(6):1121-9 [PMID: 19337275]
  19. J Cereb Blood Flow Metab. 2012 Jul;32(7):1152-66 [PMID: 22027938]
  20. J Neurotrauma. 2009 Aug;26(8):1271-80 [PMID: 19637966]
  21. Crit Care. 2012 Oct 22;16(5):R203 [PMID: 23082798]
  22. Dev Neurosci. 2006;28(4-5):447-56 [PMID: 16943667]
  23. Can J Anaesth. 2010 Oct;57(10):903-12 [PMID: 20661680]
  24. J Physiol. 2000 Jan 1;522 Pt 1:159-64 [PMID: 10618160]
  25. PLoS One. 2012;7(5):e34525 [PMID: 22570687]
  26. Exp Neurol. 2009 Aug;218(2):371-80 [PMID: 19427308]
  27. J Cereb Blood Flow Metab. 2005 Jun;25(6):763-74 [PMID: 15716852]
  28. J Cereb Blood Flow Metab. 2003 Oct;23(10):1239-50 [PMID: 14526234]
  29. J Neurosurg. 2000 Nov;93(5):815-20 [PMID: 11059663]
  30. J Physiol. 2008 Jun 1;586(11):2807-15 [PMID: 18403423]
  31. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9 [PMID: 7938003]
  32. Clin Neurol Neurosurg. 1977;80(4):213-25 [PMID: 32984]
  33. J Cereb Blood Flow Metab. 2003 Jun;23(6):658-64 [PMID: 12796713]
  34. J Neurosci Res. 2001 Dec 1;66(5):795-802 [PMID: 11746404]
  35. Minerva Anestesiol. 2012 Feb;78(2):185-93 [PMID: 21971438]
  36. Science. 1988 Jun 3;240(4857):1326-8 [PMID: 3375817]
  37. PLoS One. 2012;7(6):e39677 [PMID: 22745809]
  38. Biochem J. 1999 Oct 15;343 Pt 2:281-99 [PMID: 10510291]
  39. Acta Neurochir Suppl. 2000;76:359-64 [PMID: 11450045]
  40. Crit Care. 2010;14(1):R13 [PMID: 20141631]
  41. Brain Res. 2002 Feb 22;928(1-2):156-9 [PMID: 11844482]

Grants

  1. G1002277/Medical Research Council
  2. G9439390/Medical Research Council
  3. G080225/Medical Research Council
  4. G1002277 ID98489/Medical Research Council
  5. G0802251/Medical Research Council
  6. G0600986/Medical Research Council
  7. G0001354/Medical Research Council
  8. G0600986 ID79068/Medical Research Council

MeSH Term

Adolescent
Adult
Blood Glucose
Brain
Brain Injuries
Cerebral Arteries
Cerebrovascular Circulation
Female
Humans
Jugular Veins
Lactic Acid
Male
Microdialysis
Middle Aged

Chemicals

Blood Glucose
Lactic Acid

Word Cloud

Created with Highcharts 10.0.0lactatebrainuptake21mmol/LLactateglucoseTBI0concentrationarterialexportmedianmayinjuryextracellularpatientscerebralmicrodialysisjugulararteriovenousAVmeasurenet53IQRregardedwasteproductanaerobicmetabolismEvidencealsosuggestshoweverusealternativefuelaimdetermineextentcirculationtraumaticcomparelevelsfluidrecruited19diffusemonitoredbulbcathetersSerialdifferencescalculatedbloodsamplesprovidingMicrodialysisused17/19studieddayspost-injuryperiodsfrequentlydayBrainmicrodialysateinterquartilerange[IQR]5-37-3occurred60-2associatedsignificantlyhigherdifferencevalues403-07-02-0Mann-WhitneyUp=0003Despiterelativelyhighcomparedconcentrationsappearsup-regulatetransportservesatisfygreaterdemandsenergysubstrateinjuredhumanbrain:evidencegradientstudy

Similar Articles

Cited By