Hierarchical Modeling for Spatial Data Problems.

Alan E Gelfand
Author Information
  1. Alan E Gelfand: Department of Statistical Science, Duke University, Durham, North Carolina, 27708-0251, USA.

Abstract

This short paper is centered on hierarchical modeling for problems in spatial and spatio-temporal statistics. It draws its motivation from the interdisciplinary research work of the author in terms of applications in the environmental sciences - ecological processes, environmental exposure, and weather modeling. The paper briefly reviews hierarchical modeling specification, adopting a Bayesian perspective with full inference and associated uncertainty within the specification, while achieving exact inference to avoid what may be uncomfortable asymptotics. It focuses on point-referenced (geo-statistical) and point pattern spatial settings. It looks in some detail at problems involving data fusion, species distributions, and large spatial datasets. It also briefly describes four further examples arising from the author's recent research projects.

Keywords

References

  1. Ann Appl Stat. 2010 Dec 1;4(4):1942-1975 [PMID: 21853015]
  2. Biometrics. 2005 Mar;61(1):36-45 [PMID: 15737076]
  3. Ecol Appl. 2006 Feb;16(1):33-50 [PMID: 16705959]
  4. Spat Stat. 2012 Dec 1;2:15-32 [PMID: 24010051]
  5. J Agric Biol Environ Stat. 2010 Jun 1;15(2):176-197 [PMID: 21113385]
  6. J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848 [PMID: 19750209]
  7. Comput Stat Data Anal. 2009 Jun 15;53(8):2873-2884 [PMID: 20016667]

Grants

  1. R01 ES014843/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0modelingspatialpaperhierarchicalproblemsresearchenvironmentalprocessesbrieflyspecificationinferencedatafusionspeciesdistributionsDatashortcenteredspatio-temporalstatisticsdrawsmotivationinterdisciplinaryworkauthortermsapplicationssciences-ecologicalexposureweatherreviewsadoptingBayesianperspectivefullassociateduncertaintywithinachievingexactavoidmayuncomfortableasymptoticsfocusespoint-referencedgeo-statisticalpointpatternsettingslooksdetailinvolvinglargedatasetsalsodescribesfourexamplesarisingauthor'srecentprojectsHierarchicalModelingSpatialProblemsDirichletdirectionalextremevalueskernelpredictors

Similar Articles

Cited By (1)