Co-evolutionary dynamics of the bacteria Vibrio sp. CV1 and phages V1G, V1P1, and V1P2: implications for phage therapy.

Camilo Barbosa, Patrick Venail, Angela V Holguin, Martha J Vives
Author Information
  1. Camilo Barbosa: Department of Biological Sciences, Faculty of Sciences, Universidad de los Andes, Bogotá, Colombia.

Abstract

Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.

References

  1. Nat Rev Microbiol. 2004 Feb;2(2):166-73 [PMID: 15040264]
  2. BMC Microbiol. 2010 Sep 01;10:232 [PMID: 20809975]
  3. Nat Genet. 2002 Dec;32(4):569-77 [PMID: 12457190]
  4. Trends Biotechnol. 2010 Dec;28(12):591-5 [PMID: 20810181]
  5. Vet Microbiol. 2010 Dec 15;146(3-4):303-8 [PMID: 20605377]
  6. Am Nat. 2011 Dec;178(6):715-25 [PMID: 22089867]
  7. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2897-912 [PMID: 20713392]
  8. Proc Biol Sci. 2002 May 7;269(1494):931-6 [PMID: 12028776]
  9. Science. 2011 Apr 1;332(6025):106-9 [PMID: 21454789]
  10. J Biosci Bioeng. 2005 Sep;100(3):280-7 [PMID: 16243277]
  11. Appl Environ Microbiol. 2012 Aug;78(16):5646-52 [PMID: 22660719]
  12. Proc Biol Sci. 2012 May 22;279(1735):1896-903 [PMID: 22171085]
  13. Evolution. 2010 Oct;64(10):2980-7 [PMID: 20497216]
  14. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14250-5 [PMID: 12384570]
  15. PLoS One. 2012;7(3):e31698 [PMID: 22396736]
  16. Proc Biol Sci. 1999 Feb 22;266(1417):397-404 [PMID: 10097397]
  17. Res Microbiol. 2008 Jun;159(5):382-9 [PMID: 18582563]
  18. Curr Opin Microbiol. 2011 Jun;14(3):251-8 [PMID: 21489864]
  19. Drug Discov Today. 2009 Jun;14(11-12):536-40 [PMID: 19508915]
  20. Proc Biol Sci. 2006 Jan 7;273(1582):45-9 [PMID: 16519233]
  21. Nature. 2011 Mar 31;471(7340):588-9 [PMID: 21455171]
  22. FEMS Microbiol Lett. 2004 Dec 15;241(2):171-7 [PMID: 15598529]
  23. FEMS Microbiol Rev. 2004 May;28(2):127-81 [PMID: 15109783]
  24. Appl Environ Microbiol. 2004 Jun;70(6):3417-24 [PMID: 15184139]
  25. Science. 2010 Jan 8;327(5962):167-70 [PMID: 20056882]
  26. Trends Biotechnol. 2007 Oct;25(10):472-9 [PMID: 17719667]
  27. Curr Biol. 2005 Dec 20;15(24):R992-4 [PMID: 16360677]
  28. Am Nat. 2002 Jun;159(6):658-69 [PMID: 18707388]
  29. Adv Appl Microbiol. 2012;78:1-23 [PMID: 22305091]
  30. Nature. 2010 Mar 11;464(7286):275-8 [PMID: 20182425]
  31. Appl Environ Microbiol. 2003 Jan;69(1):170-6 [PMID: 12513992]
  32. J Assoc Physicians India. 2003 Jun;51:593-6 [PMID: 15266928]
  33. Evolution. 2008 Jan;62(1):1-11 [PMID: 18005153]
  34. PLoS Genet. 2011 Aug;7(8):e1002188 [PMID: 21829387]
  35. Curr Opin Microbiol. 2005 Aug;8(4):444-50 [PMID: 15979387]
  36. Nat Rev Microbiol. 2010 May;8(5):317-27 [PMID: 20348932]
  37. Int J Antimicrob Agents. 2007 Aug;30(2):118-28 [PMID: 17566713]

MeSH Term

Animals
Aquaculture
Bacterial Infections
Bacteriophages
Biological Evolution
Biological Therapy
Humans
Penaeidae
Vibrio

Word Cloud

Created with Highcharts 10.0.0infectionsphageresistancephagesbacteriaVibriouseshrimpbacterialdynamicshatcheriesantibioticsmaytherapypromisingfightrapidlyspCV1V1GV1P1cocktailinfectivitysuggestingBacterialsecondlargestcausemortalityAmonggenusconstitutemajorthreatineffectivebannedfoodsectoralternativesrequiredHistoricallybacteriophagesthoughtoptionHowevercandevelopedSinceemergencehighlyundesirableformalcharacterizationacquisitionmandatoryexploredco-evolutionaryV1P2Single-phagetreatmentswellcomposedthreeconsideredfoundpresencesingleevolveddecreasedmonotherapyinefficienttreatmentcontraryconsiderablydelayedevolutionsustainedperiodslarvaesusceptiblesimultaneousmultipleseriousstrategycontrolvibriosisfindingstermsconsequencesdifferentindustrialmedicalscenariospresentCo-evolutionaryV1P2:implications

Similar Articles

Cited By