Modelling the spread of American foulbrood in honeybees.

Samik Datta, James C Bull, Giles E Budge, Matt J Keeling
Author Information
  1. Samik Datta: WIDER group, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK. s.datta@warwick.ac.uk

Abstract

We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected 'occult' infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction.

Keywords

References

  1. Pest Manag Sci. 2007 Nov;63(11):1062-8 [PMID: 17879983]
  2. J Theor Biol. 2009 Jun 21;258(4):623-9 [PMID: 19269297]
  3. Science. 2001 May 11;292(5519):1155-60 [PMID: 11303090]
  4. Food Addit Contam. 2005 Jun;22(6):573-8 [PMID: 16019832]
  5. J R Soc Interface. 2009 Dec 6;6(41):1145-51 [PMID: 19091686]
  6. J Invertebr Pathol. 2010 Jan;103 Suppl 1:S5-9 [PMID: 20105559]
  7. J Invertebr Pathol. 2010 Oct;105(2):164-70 [PMID: 20600088]
  8. J Invertebr Pathol. 2000 Jan;75(1):95-6 [PMID: 10631065]
  9. Science. 2007 Oct 12;318(5848):283-7 [PMID: 17823314]
  10. Science. 2001 Oct 26;294(5543):813-7 [PMID: 11679661]
  11. Prev Vet Med. 2009 Dec 1;92(4):360-5 [PMID: 19762099]
  12. Proc Biol Sci. 2008 May 7;275(1638):1001-5 [PMID: 18252669]
  13. J Invertebr Pathol. 2010 Jan;103 Suppl 1:S10-9 [PMID: 19909971]
  14. Nature. 2006 Mar 2;440(7080):83-6 [PMID: 16511494]
  15. Proc Biol Sci. 2009 Sep 22;276(1671):3239-48 [PMID: 19570791]

Grants

  1. BB/I000801/1/Biotechnology and Biological Sciences Research Council
  2. /Wellcome Trust
  3. BB/I000801/Biotechnology and Biological Sciences Research Council
  4. BB/I000615/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Bees
Gram-Positive Bacterial Infections
Models, Biological
Paenibacillus
Stochastic Processes
United States

Word Cloud

Created with Highcharts 10.0.0epidemicspreadAFBmodelAmericanfoulbroodhoneybeeSIRMCMCinfectioncanislanddatahoneybeesownerusesimulateusingfoundstochasticlikelihoodinvestigatediseasecausedbacteriumPaenibacilluslarvaeaffectsbeesextremelydamagingbeehivesdatasetcomesinspectionperiodcarriedcoloniesJerseysummer2010includenumberhiveslocationapiariesacrossspatialunderlyingnetworkcharacterizeMarkovchainMonteCarloschemedetermineparameterstimesincludingundetected'occult'infectionsLikelymethodsinferredanalysisdistance-owner-basedtransmissionscontributeresultscorroboratedsimulatingresultingaggregatelevelscomparableimpactdifferentcontrolstrategiescontrollingearlierinspectionsresultsmallerepidemicshigherextinctionModellingBayesianepidemiology

Similar Articles

Cited By