Non-small cell lung cancer is susceptible to induction of DNA damage responses and inhibition of angiogenesis by telomere overhang oligonucleotides.

Neelu Puri, Ryan T Pitman, Richard E Mulnix, Terrianne Erickson, Audra N Iness, Connie Vitali, Yutong Zhao, Ravi Salgia
Author Information
  1. Neelu Puri: Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States. Electronic address: neelupur@uic.edu.
  2. Ryan T Pitman: Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States.
  3. Richard E Mulnix: Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States.
  4. Terrianne Erickson: Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States.
  5. Audra N Iness: Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States.
  6. Connie Vitali: Department of Pathology, University of Illinois College of Medicine, Rockford, IL, United States.
  7. Yutong Zhao: Department of Medicine, Division of Pulmonary, Allergy, Critical Care, University of Pittsburgh, Pittsburgh, PA, United States.
  8. Ravi Salgia: Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, United States.

Abstract

Exposure of the telomere overhang acts as a DNA damage signal, and exogenous administration of an 11-base oligonucleotide homologous to the 3'-telomere overhang sequence (T-oligo) mimics the effects of overhang exposure by inducing senescence and cell death in non-small cell lung cancer (NSCLC) cells, but not in normal bronchial epithelial cells. T-oligo-induced decrease in cellular proliferation in NSCLC is likely directed through both p53 and its homolog, p73, with subsequent induction of senescence and expression of senescence-associated proteins, p21, p33(ING), and p27(Kip1) both in vivo and in vitro. Additionally, T-oligo decreases tumor size and inhibits angiogenesis through decreased VEGF signaling and increased TSP-1 expression.

Keywords

References

  1. J Am Chem Soc. 2002 Mar 13;124(10):2098-9 [PMID: 11878947]
  2. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12627-32 [PMID: 9356500]
  3. Oncogene. 2001 Nov 1;20(50):7293-300 [PMID: 11704858]
  4. J Natl Cancer Inst. 2010 Apr 21;102(8):520-1 [PMID: 20388877]
  5. Br J Cancer. 2004 Jul 19;91(2):355-8 [PMID: 15188009]
  6. Methods Mol Biol. 2007;371:21-31 [PMID: 17634571]
  7. PLoS Med. 2005 Mar;2(3):e73 [PMID: 15737014]
  8. FASEB J. 2003 Feb;17(2):152-62 [PMID: 12554694]
  9. Oncogene. 2001 Sep 13;20(41):5818-25 [PMID: 11593387]
  10. Mol Cell Biol. 1996 Sep;16(9):4604-13 [PMID: 8756616]
  11. Clin Cancer Res. 2003 Mar;9(3):1145-54 [PMID: 12631620]
  12. Cancer Chemother Pharmacol. 2011 Jun;67(6):1369-80 [PMID: 20803015]
  13. Cell Growth Differ. 1998 Feb;9(2):113-8 [PMID: 9486847]
  14. Mol Cell. 2011 Jul 8;43(1):57-71 [PMID: 21726810]
  15. Methods Mol Biol. 2013;965:37-61 [PMID: 23296650]
  16. J Biol Chem. 2006 Jul 14;281(28):19501-11 [PMID: 16687414]
  17. Invest New Drugs. 2003 May;21(2):141-8 [PMID: 12889735]
  18. Oncogene. 2000 Jul 20;19(31):3470-6 [PMID: 10918605]
  19. PLoS One. 2010 Oct 15;5(10):e13442 [PMID: 20976175]
  20. Semin Oncol. 2011 Apr;38(2):274-83 [PMID: 21421117]
  21. Genes Dev. 2009 Aug 15;23(16):1895-909 [PMID: 19608766]
  22. Methods Mol Med. 2003;75:53-77 [PMID: 12407735]
  23. Biochim Biophys Acta. 2006 Apr;1765(2):178-88 [PMID: 16406676]
  24. J Carcinog. 2008;7:9 [PMID: 19240370]
  25. Cancer Res. 1999 Apr 1;59(7):1391-9 [PMID: 10197600]
  26. J Dermatol Sci. 2009 Dec;56(3):154-62 [PMID: 19906512]
  27. J Mol Med (Berl). 2007 Nov;85(11):1175-86 [PMID: 17589818]
  28. Int J Cancer. 2009 Jan 15;124(2):473-82 [PMID: 19003960]
  29. Nat Rev Cancer. 2009 Oct;9(10):738-48 [PMID: 19776743]
  30. Drug Resist Updat. 2001 Oct;4(5):303-13 [PMID: 11991684]
  31. Breast Cancer Res. 2010;12(5):R71 [PMID: 20846433]
  32. Oncologist. 2007 Dec;12(12):1443-55 [PMID: 18165622]
  33. Nature. 1998 Jan 15;391(6664):295-8 [PMID: 9440695]
  34. Oligonucleotides. 2009 Sep;19(3):287-92 [PMID: 19642913]
  35. J Cell Biochem. 2008 May 15;104(2):444-52 [PMID: 18044713]
  36. Gene Ther. 2001 Nov;8(22):1705-12 [PMID: 11892838]
  37. Biotech Histochem. 2008 Jun;83(3-4):179-89 [PMID: 18846440]
  38. Exp Cell Res. 2004 Dec 10;301(2):189-200 [PMID: 15530855]
  39. Oncotarget. 2013 May;4(5):761-71 [PMID: 23800953]
  40. Science. 1999 Feb 26;283(5406):1321-5 [PMID: 10037601]
  41. Cancer Treat Rev. 2013 Aug;39(5):444-56 [PMID: 22841437]
  42. Clin Cancer Res. 2000 Nov;6(11):4287-91 [PMID: 11106245]
  43. J Oncol. 2010;2010:928628 [PMID: 20652008]
  44. FASEB J. 2007 Sep;21(11):2918-30 [PMID: 17449721]
  45. Cancer Res. 1992 Apr 15;52(8):2340-3 [PMID: 1559236]
  46. Mol Pharmacol. 2002 May;61(5):1154-62 [PMID: 11961134]
  47. Breast Cancer Res. 2007;9(1):R13 [PMID: 17257427]
  48. Exp Cell Res. 2002 Jun 10;276(2):185-93 [PMID: 12027448]
  49. FASEB J. 2004 Sep;18(12):1373-81 [PMID: 15333580]
  50. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19997-20002 [PMID: 21041624]
  51. Cancer Res. 1999 Aug 1;59(15):3761-7 [PMID: 10446993]
  52. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 [PMID: 7568133]
  53. Cold Spring Harb Perspect Med. 2012 May;2(5):a006627 [PMID: 22553494]
  54. Cancer Res. 1994 May 1;54(9):2287-91 [PMID: 8162565]
  55. Oncogene. 2004 Jan 22;23(3):631-8 [PMID: 14737098]
  56. Anticancer Drugs. 2008 Apr;19(4):329-38 [PMID: 18454043]
  57. Nucleic Acid Ther. 2013 Jun;23(3):167-74 [PMID: 23634944]
  58. Oncogene. 2005 Apr 21;24(18):2929-43 [PMID: 15735718]
  59. Mol Pharmacol. 2001 Nov;60(5):981-8 [PMID: 11641426]
  60. Br J Cancer. 2006 Dec 4;95(11):1514-24 [PMID: 17088910]
  61. J Biol Chem. 2004 Feb 27;279(9):8076-83 [PMID: 14634023]
  62. J Cell Biol. 1999 Nov 15;147(4):823-30 [PMID: 10562283]
  63. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):527-31 [PMID: 12515865]
  64. Oligonucleotides. 2011 Feb;21(1):47-53 [PMID: 21281128]
  65. J Cell Physiol. 2012 Jun;227(6):2586-94 [PMID: 21898405]

Grants

  1. R01 HL091916/NHLBI NIH HHS
  2. R01 HL112791/NHLBI NIH HHS

MeSH Term

Animals
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
Bronchi
Carcinoma, Non-Small-Cell Lung
Cell Line, Tumor
Cell Proliferation
Cellular Senescence
Cyclin-Dependent Kinase Inhibitor p21
Cyclin-Dependent Kinase Inhibitor p27
DNA Damage
Epithelial Cells
Gene Expression Regulation, Neoplastic
Genetic Predisposition to Disease
Humans
Inhibitor of Growth Protein 1
Intracellular Signaling Peptides and Proteins
Male
Mice
Mice, Nude
Neoplasm Transplantation
Neovascularization, Pathologic
Nuclear Proteins
Oligonucleotides
Signal Transduction
Telomere
Tumor Suppressor Proteins
Vascular Endothelial Growth Factor A

Chemicals

Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
CDKN1A protein, human
Cyclin-Dependent Kinase Inhibitor p21
ING1 protein, human
Inhibitor of Growth Protein 1
Intracellular Signaling Peptides and Proteins
Nuclear Proteins
Oligonucleotides
SPZ1 protein, human
Tumor Suppressor Proteins
VEGFA protein, human
Vascular Endothelial Growth Factor A
Cyclin-Dependent Kinase Inhibitor p27

Word Cloud

Created with Highcharts 10.0.0overhangcellcancertelomereDNAdamageT-oligosenescencelungNSCLCcellsp53inductionexpressionangiogenesisExposureactssignalexogenousadministration11-baseoligonucleotidehomologous3'-telomeresequencemimicseffectsexposureinducingdeathnon-smallnormalbronchialepithelialT-oligo-induceddecreasecellularproliferationlikelydirectedhomologp73subsequentsenescence-associatedproteinsp21p33INGp27Kip1vivovitroAdditionallydecreasestumorsizeinhibitsdecreasedVEGFsignalingincreasedTSP-1Non-smallsusceptibleresponsesinhibitionoligonucleotidesAngiogenesisApoptosisLungSenescenceTelomere

Similar Articles

Cited By