Abilities of the mCP Agar method and CRENAME alpha toxin-specific real-time PCR assay to detect Clostridium perfringens spores in drinking water.

Andrée F Maheux, Eve Bérubé, Dominique K Boudreau, Romain Villéger, Philippe Cantin, Maurice Boissinot, Luc Bissonnette, Michel G Bergeron
Author Information
  1. Andrée F Maheux: Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Québec City, Québec, Canada.

Abstract

We first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of a Clostridium perfringens-specific real-time PCR (rtPCR) assay based on the cpa gene (cpa rtPCR) by using a bacterial strain panel composed of C. perfringens and non-C. perfringens Clostridium strains. All non-C. perfringens Clostridium strains tested negative, whereas all C. perfringens strains tested positive with the cpa rtPCR, for an analytical specificity and ubiquity of 100%. The cpa rtPCR assay was then used to confirm the identity of 116 putative C. perfringens isolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar and cpa rtPCR were identified by sequencing the 16S rRNA and cpa genes. Four mCP(-)/rtPCR(+) colonies were identified as C. perfringens, whereas 3 mCP(+)/rtPCR(-) colonies were identified as non-C. perfringens. The cpa rtPCR was negative with all 51 non-C. perfringens strains and positive with 64 of 65 C. perfringens strains. Finally, we compared mCP agar and a CRENAME (concentration and recovery of microbial particles, extraction of nucleic acids, and molecular enrichment) procedure plus cpa rtPCR (CRENAME + cpa rtPCR) for their abilities to detect C. perfringens spores in drinking water. CRENAME + cpa rtPCR detected as few as one C. perfringens CFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME + cpa rtPCR also allows the simultaneous and sensitive detection of Escherichia coli and C. perfringens from the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection.

References

  1. J Bacteriol. 2008 Nov;190(22):7548-58 [PMID: 18790860]
  2. Southeast Asian J Trop Med Public Health. 2005 Jan;36(1):162-9 [PMID: 15906661]
  3. Appl Environ Microbiol. 1995 Jun;61(6):2235-41 [PMID: 7793943]
  4. Biochemistry. 2002 May 21;41(20):6253-62 [PMID: 12009886]
  5. Appl Environ Microbiol. 1993 Aug;59(8):2418-24 [PMID: 8368831]
  6. Can J Microbiol. 1988 Jan;34(1):78-9 [PMID: 2897874]
  7. Foodborne Pathog Dis. 2008 Oct;5(5):629-39 [PMID: 18681798]
  8. Appl Environ Microbiol. 1984 May;47(5):1172-4 [PMID: 6331307]
  9. Int J Food Microbiol. 2013 Oct 1;167(1):92-5 [PMID: 23816139]
  10. Lett Appl Microbiol. 2006 May;42(5):438-44 [PMID: 16620200]
  11. Appl Environ Microbiol. 1993 Jan;59(1):47-51 [PMID: 16348859]
  12. Environ Sci Technol. 2005 Nov 15;39(22):8614-21 [PMID: 16323754]
  13. J Water Health. 2011 Jun;9(2):265-78 [PMID: 21942192]
  14. J Appl Microbiol. 2010 Jun;108(6):1994-2002 [PMID: 19929952]
  15. J Clin Microbiol. 2009 Mar;47(3):751-7 [PMID: 19144808]
  16. Southeast Asian J Trop Med Public Health. 2001 Mar;32(1):105-13 [PMID: 11485070]
  17. Ground Water. 2011 Jan-Feb;49(1):4-11 [PMID: 20477877]
  18. Clin Microbiol Infect. 2012 Nov;18(11):1089-96 [PMID: 22022828]
  19. Diagn Mol Pathol. 2005 Jun;14(2):90-6 [PMID: 15905692]
  20. J Microbiol Immunol Infect. 2003 Dec;36(4):288-93 [PMID: 14723262]
  21. Appl Environ Microbiol. 1979 Jan;37(1):55-66 [PMID: 216310]
  22. Appl Environ Microbiol. 2001 Sep;67(9):4382-4 [PMID: 11526053]
  23. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  24. Environ Health Perspect. 2006 Feb;114(2):228-36 [PMID: 16451859]
  25. Appl Microbiol. 1968 Jan;16(1):82-9 [PMID: 4295179]
  26. Water Sci Technol. 2001;43(12):201-4 [PMID: 11464756]
  27. Appl Environ Microbiol. 1998 Jul;64(7):2596-600 [PMID: 9647835]
  28. Swiss Med Wkly. 2012 Oct 04;142:w13683 [PMID: 23037557]
  29. J Food Prot. 2002 Sep;65(9):1457-62 [PMID: 12233858]
  30. Mar Pollut Bull. 2001 Apr;42(4):286-93 [PMID: 11381749]
  31. Water Res. 2011 Mar;45(6):2342-54 [PMID: 21333318]
  32. Appl Environ Microbiol. 2005 Jan;71(1):65-71 [PMID: 15640171]
  33. Water Sci Technol. 2001;44(7):181-8 [PMID: 11724486]
  34. Appl Environ Microbiol. 1979 Jun;37(6):1196-200 [PMID: 225991]
  35. Appl Environ Microbiol. 2011 Sep;77(17):6199-207 [PMID: 21764965]

Grants

  1. /Canadian Institutes of Health Research

MeSH Term

Agar
Bacterial Toxins
Bacteriological Techniques
Calcium-Binding Proteins
Clostridium perfringens
Culture Media
Drinking Water
Real-Time Polymerase Chain Reaction
Sensitivity and Specificity
Spores, Bacterial
Type C Phospholipases

Chemicals

Bacterial Toxins
Calcium-Binding Proteins
Culture Media
Drinking Water
Agar
Type C Phospholipases
alpha toxin, Clostridium perfringens

Word Cloud

Created with Highcharts 10.0.0perfringenscpartPCRCmCPstrainswater+CRENAMEClostridiumnon-Cagardrinkingdetectassaywhereasidentifiedanalyticalspecificityubiquityreal-timePCRtestednegativepositiveusedresults-/rtPCRcoloniessporessamplehfirstdeterminedieabilityperfringens-specificbasedgeneusingbacterialstrainpanelcomposed100%confirmidentity116putativeisolatesrecoveredfiltrationsamplescultureColoniespresentingdiscordantphenotypesequencing16SrRNAgenesFour3516465FinallycomparedconcentrationrecoverymicrobialparticlesextractionnucleicacidsmolecularenrichmentprocedureplusabilitiesdetectedoneCFUper100mlless5tookleast25deliveralsoallowssimultaneoussensitivedetectionEscherichiacolipotableassesspublichealthriskposedpotentiallycontaminatedpathogensresistantdisinfectionAbilitiesAgarmethodalphatoxin-specific

Similar Articles

Cited By (6)