Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution.

Anna A Slavokhotova, Eugene A Rogozhin, Alexander K Musolyamov, Yaroslav A Andreev, Peter B Oparin, Antonina A Berkut, Alexander A Vassilevski, Tsezi A Egorov, Eugene V Grishin, Tatyana I Odintsova
Author Information
  1. Anna A Slavokhotova: Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, 119991, Moscow, Russian Federation, annslav82@gmail.com.

Abstract

Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.

Associated Data

GENBANK | HG423454
UniProtKB | C0HJD6

References

  1. Protein Expr Purif. 2008 Jul;60(1):89-95 [PMID: 18455432]
  2. Curr Protein Pept Sci. 2005 Feb;6(1):85-101 [PMID: 15638771]
  3. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  4. J Biol Chem. 2000 Feb 18;275(7):5193-9 [PMID: 10671566]
  5. Peptides. 2005 Nov;26(11):2064-73 [PMID: 16269343]
  6. Nucleic Acids Res. 1995 Mar 25;23(6):1087-8 [PMID: 7731798]
  7. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10614-9 [PMID: 11535828]
  8. Biochem J. 2012 Aug 15;446(1):69-77 [PMID: 22612157]
  9. J Biol Chem. 1999 Jan 22;274(4):2563-70 [PMID: 9891029]
  10. J Mol Biol. 2012 Dec 14;424(5):227-39 [PMID: 23036860]
  11. Plant J. 1999 Sep;19(6):699-710 [PMID: 10571855]
  12. J Biol Chem. 1997 Sep 26;272(39):24480-7 [PMID: 9305910]
  13. J Biol Chem. 1992 Sep 15;267(26):18814-20 [PMID: 1527010]
  14. J Biol Chem. 2011 Jul 15;286(28):25145-53 [PMID: 21561864]
  15. FEBS J. 2009 Aug;276(15):4266-75 [PMID: 19583772]
  16. Plant Physiol Biochem. 2008 Nov;46(11):941-50 [PMID: 18674922]
  17. Eur J Biochem. 1995 May 15;230(1):250-7 [PMID: 7601108]
  18. FEBS Lett. 2001 Jun 8;498(2-3):219-22 [PMID: 11412861]
  19. FEBS Lett. 1997 Jan 2;400(1):103-7 [PMID: 9000522]
  20. J Biol Chem. 2004 Jun 18;279(25):25955-8 [PMID: 15075336]
  21. J Biol Chem. 2006 Jul 28;281(30):20983-20992 [PMID: 16735513]
  22. Proteins. 2008 Jul;72(1):229-39 [PMID: 18214975]
  23. Biochimie. 2011 Mar;93(3):450-6 [PMID: 21056078]
  24. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  25. Peptides. 2003 Jun;24(6):799-805 [PMID: 12948831]
  26. Biochemistry. 1981 Jan 6;20(1):33-7 [PMID: 7470476]
  27. Biotechnology (N Y). 1993 Feb;11(2):187-93 [PMID: 7763371]
  28. Plant Cell. 2004 Apr;16(4):857-73 [PMID: 15020745]
  29. Biochim Biophys Acta. 2002 Apr 29;1596(2):269-82 [PMID: 12007608]
  30. FEBS J. 2013 Aug;280(15):3594-608 [PMID: 23702306]
  31. Anal Biochem. 2010 Dec 1;407(1):144-6 [PMID: 20670609]
  32. Plant Cell. 1993 Feb;5(2):203-13 [PMID: 8453302]
  33. J Biol Chem. 1993 Apr 5;268(10):7044-54 [PMID: 8463238]
  34. J Biol Chem. 2007 Sep 21;282(38):27760-8 [PMID: 17640870]
  35. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  36. Appl Environ Microbiol. 2001 Jul;67(7):2883-94 [PMID: 11425698]
  37. Biopolymers. 1998;47(6):479-91 [PMID: 10333739]
  38. J Biol Chem. 1988 Apr 25;263(12):5745-51 [PMID: 2833514]

MeSH Term

Amino Acid Sequence
Antifungal Agents
Cloning, Molecular
Evolution, Molecular
Fungi
Gene Expression Regulation, Plant
Molecular Sequence Data
Plant Proteins
Seeds
Stellaria

Chemicals

Antifungal Agents
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0peptideSm-AMP-XstructuredefensepeptidesantifungalCgenediseasepathogenimportantplantStellariamedia1X3C234α-hairpinintwodisulfide-CactivityprecursorproteinPlantcomplexmultistagesysteminvolvinginitialrecognitioninvadingsignaltransductionactivationspecializedgenesroledeterrencebelongsso-calledsmallpolypeptidemoleculespresentantimicrobialpropertiesUsingmultidimensionalliquidchromatographyisolatednovelnamed33residuescommonchickweedseedssequenceshowshomologypreviouslydescribedproteinspeculiarcysteinearrangementXnChoweverallocatesrecentlyacknowledgedfamilysharehelix-loop-helixfoldstabilizedbridgesexhibitshighbroad-spectrumfungalphytopathogensshowedN-C-terminal"tail"regionstruncatedvariantsSm-AMP-X1bondspreservedSm-AMP-X2internalS-S-bondleftprogressivelylessactivefungipresentedlargelydisorderedopposedpredominantlyhelicalconformationfull-lengthcDNAcloningrevealedprocesseduniquemultimodularcontainsmany12tandemrepeatsα-hairpinin-likeStructuresm-amp-xrelatedpseudogenessm-amp-x-ψ1sm-amp-x-ψ2allowstracingevolutionaryscenarioledgenerationsophisticatednewpromisingcandidateengineeringresistanceplantsNovelseeds:biosynthesisevolution

Similar Articles

Cited By