Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

Sandra M Mathioni, Nrupali Patel, Bianca Riddick, James A Sweigard, Kirk J Czymmek, Jeffrey L Caplan, Sridhara G Kunjeti, Saritha Kunjeti, Vidhyavathi Raman, Bradley I Hillman, Donald Y Kobayashi, Nicole M Donofrio
Author Information
  1. Sandra M Mathioni: Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America.

Abstract

Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

References

  1. Curr Opin Biotechnol. 2002 Jun;13(3):238-43 [PMID: 12180099]
  2. Curr Opin Plant Biol. 2003 Aug;6(4):365-71 [PMID: 12873532]
  3. BMC Genomics. 2011 Jan 19;12:49 [PMID: 21247492]
  4. BMC Genomics. 2008 Oct 16;9:488 [PMID: 18925949]
  5. Fungal Genet Biol. 2002 Dec;37(3):211-20 [PMID: 12431456]
  6. Appl Environ Microbiol. 2001 May;67(5):2088-94 [PMID: 11319086]
  7. Environ Pollut. 2005 Jan;133(2):183-98 [PMID: 15519450]
  8. Phytopathology. 2001 Feb;91(2):204-11 [PMID: 18944395]
  9. Mol Plant Pathol. 2012 May;13(4):414-30 [PMID: 22471698]
  10. J Mol Biol. 2004 Mar 19;337(2):243-53 [PMID: 15003443]
  11. Mol Gen Genet. 2000 Jun;263(5):877-88 [PMID: 10905355]
  12. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  13. Nat Protoc. 2007;2(4):953-71 [PMID: 17446895]
  14. Nature. 2011 Jan 27;469(7331):498-503 [PMID: 21270888]
  15. Nature. 2004 Sep 30;431(7008):582-6 [PMID: 15457264]
  16. Genome Res. 2006 Aug;16(8):1056-72 [PMID: 16825666]
  17. Plant Cell. 2009 Apr;21(4):1239-51 [PMID: 19376935]
  18. Microbiol Res. 2011 Mar 20;166(3):216-25 [PMID: 20630733]
  19. J Am Chem Soc. 2011 Feb 2;133(4):643-5 [PMID: 21171605]
  20. ISME J. 2011 Sep;5(9):1494-504 [PMID: 21614084]
  21. J Mol Biol. 2003 May 2;328(3):581-92 [PMID: 12706718]
  22. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63 [PMID: 19666480]
  23. Bioinformatics. 2007 May 1;23(9):1159-60 [PMID: 17332022]
  24. J Eukaryot Microbiol. 2009 Mar-Apr;56(2):182-7 [PMID: 21462551]
  25. Bioinformatics. 2010 Aug 1;26(15):1918-9 [PMID: 20538728]
  26. Mol Cell Biol. 2002 Mar;22(5):1607-14 [PMID: 11839825]
  27. Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92 [PMID: 21785931]
  28. Mycopathol Mycol Appl. 1971 Aug 6;44(4):373-8 [PMID: 5165182]
  29. Environ Microbiol. 2008 May;10(5):1145-57 [PMID: 18218030]
  30. Antonie Van Leeuwenhoek. 2013 Jun;103(6):1271-80 [PMID: 23529159]
  31. FEMS Microbiol Rev. 2006 Mar;30(2):215-42 [PMID: 16472305]
  32. Annu Rev Phytopathol. 2007;45:399-436 [PMID: 17506648]
  33. Nature. 2005 Apr 21;434(7036):980-6 [PMID: 15846337]
  34. BMC Plant Biol. 2008 Feb 29;8:24 [PMID: 18307823]
  35. Genome Biol. 2005;6(3):R24 [PMID: 15774025]
  36. FEMS Microbiol Lett. 1999 Jun 15;175(2):149-63 [PMID: 10386364]
  37. Nucleic Acids Res. 2000 Feb 15;28(4):974-81 [PMID: 10648791]
  38. Can J Microbiol. 2005 Aug;51(8):719-23 [PMID: 16234871]
  39. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  40. Eukaryot Cell. 2008 Jun;7(6):926-37 [PMID: 18441123]
  41. Annu Rev Phytopathol. 2002;40:251-85 [PMID: 12147761]
  42. Phytopathology. 2005 Jun;95(6):701-7 [PMID: 18943787]
  43. Bioinformatics. 2009 Oct 1;25(19):2473-7 [PMID: 19633094]
  44. Nat Rev Microbiol. 2011 Jun 16;9(7):487-98 [PMID: 21677684]
  45. Eukaryot Cell. 2004 Aug;3(4):835-46 [PMID: 15302816]
  46. Future Microbiol. 2011 Jul;6(7):799-817 [PMID: 21797692]
  47. PLoS Pathog. 2010 May 20;6(5):e1000909 [PMID: 20502632]
  48. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  49. Plant Cell. 1999 Oct;11(10):2013-30 [PMID: 10521529]
  50. Cell. 2002 May 31;109(5):575-88 [PMID: 12062101]
  51. PLoS One. 2010 Sep 14;5(9):e12725 [PMID: 20856863]
  52. Appl Environ Microbiol. 2005 Jan;71(1):261-9 [PMID: 15640196]
  53. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  54. Bioinformatics. 2002 Aug;18(8):1109-15 [PMID: 12176834]
  55. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W375-9 [PMID: 15215414]
  56. Eur J Biochem. 1996 Nov 1;241(3):779-86 [PMID: 8944766]
  57. Plant Cell. 2004 Sep;16(9):2499-513 [PMID: 15319478]

MeSH Term

Amino Acid Motifs
Antibiosis
Bacterial Load
Computational Biology
Fungal Proteins
Gene Expression Profiling
Gene Expression Regulation, Fungal
Lysobacter
Magnaporthe
Mutation
Nucleotide Motifs
Position-Specific Scoring Matrices
Promoter Regions, Genetic
Protein Interaction Domains and Motifs
Time Factors
Transcriptome

Chemicals

Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0fungalresponsegenesdefenseenzymogenesstrainC3oryzaebacterialwild-typefungusDCAsuitecalledbasalpathogenattackstresstranscriptionalriceblastMagnaporthechallengedantagonistLysobacterinteractionsLalsomutantpreviously100foundgeneclassPlantsanimalsevolvedfirstlinepathogensinnateimmunitydefensesorganismswellstudiedalmostcompletelackunderstandingsystemsspeciesspecificallyabledetectmountuponHencegoalpresentstudyunderstandfungirespondbioticassessingprofileBasedmicroscopicobservationsMselectedearlyintermediatestagesrepresentedtime-points39hourspost-inoculationrespectivelyevaluatetranscriptomeusingRNA-seqcomparativepurposesdemonstrateddevoidantifungalactivitycomparisondatarevealed463down-regulatedup-regulatedinteractionFunctionalcategorizationincludedrolescarbohydratemetabolismcellulartransportOnebelongsCFEM-domainproteinsAnotherCFEMproteinPTH11characterizeddeletioncausedadvancedlesiondevelopmentcomparedgrowthdiscusscharacterizationrespectroleTranscriptomicsrevealscandidate

Similar Articles

Cited By