Theoretical modelling of photoswitching of hyperpolarisabilities in ruthenium complexes.

Benjamin J Coe, Aggelos Avramopoulos, Manthos G Papadopoulos, Kristine Pierloot, Steven Vancoillie, Heribert Reis
Author Information
  1. Benjamin J Coe: School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (UK). b.coe@manchester.ac.uk.

Abstract

Static excited-state polarisabilities and hyperpolarisabilities of three Ru(II) ammine complexes are computed at the density functional theory (DFT) and several correlated ab initio levels. Most accurate modelling of the low energy electronic absorption spectrum is obtained with the hybrid functionals B3LYP, B3P86 or M06 for the complex [Ru(II)(NH3)5(MeQ(+))](3+) (MeQ(+)=N-methyl-4,4'-bipyridinium, 3) in acetonitrile. The match with experimental data is less good for [Ru(II)(NH3)5L](3+) (L=N-methylpyrazinium, 2; N-methyl-4-{E,E-4-(4-pyridyl)buta-1,3-dienyl}pyridinium, 4). These calculations confirm that the first dipole- allowed excited state (FDAES) has metal-to-ligand charge-transfer (MLCT) character. Both the solution and gas-phase results obtained for 3 by using B3LYP, B3P86 or M06 are very similar to those from restricted active-space SCF second-order perturbation theory (RASPT2) with a very large basis set and large active space. However, the time-dependent DFT λ(max) predictions from the long-range corrected functionals CAM-B3LYP, LC-ωPBE and wB97XB and also the fully ab initio resolution of identity approximate coupled-cluster method (gas-phase only) are less accurate for all three complexes. The ground state (GS) two-state approximation first hyperpolarisability β(2SA) for 3 from RASPT2 is very close to that derived experimentally via hyper-Rayleigh scattering, whereas the corresponding DFT-based values are considerably larger. The β responses calculated by using B3LYP, B3P86 or M06 increase markedly as the π-conjugation extends on moving along the series 2→4, for both the GS and FDAES species. All three functionals predict substantial FDAES β enhancements for each complex, increasing with the π-conjugation, up to about sevenfold for 4. Also, the computed second hyperpolarisabilities γ generally increase in the FDAES, but the results vary between the different functionals.

Keywords

References

  1. Phys Rev A. 1991 Feb 1;43(3):1673-1676 [PMID: 9905207]
  2. J Am Chem Soc. 2004 Aug 25;126(33):10418-27 [PMID: 15315458]
  3. Phys Rev A. 1995 Apr;51(4):3234-3245 [PMID: 9911964]
  4. Phys Chem Chem Phys. 2012 Apr 28;14(16):5383-8 [PMID: 22426115]
  5. J Chem Phys. 2006 Jul 7;125(1):014506 [PMID: 16863315]
  6. J Phys Chem A. 2009 Oct 15;113(41):10994-1001 [PMID: 19772332]
  7. Phys Rev A. 1992 Apr 1;45(7):4233-4236 [PMID: 9907495]
  8. J Phys Chem A. 2007 Feb 22;111(7):1319-27 [PMID: 17256825]
  9. Inorg Chem. 2012 May 21;51(10):5627-36 [PMID: 22545780]
  10. Phys Chem Chem Phys. 2010 Nov 28;12(44):14812-21 [PMID: 20949212]
  11. Inorg Chem. 2011 Dec 19;50(24):12886-99 [PMID: 22077287]
  12. J Am Chem Soc. 2008 Mar 19;130(11):3286-7 [PMID: 18298121]
  13. Angew Chem Int Ed Engl. 2008;47(3):577-80 [PMID: 18058879]
  14. Angew Chem Int Ed Engl. 1999 Feb 1;38(3):366-369 [PMID: 29711640]
  15. Phys Chem Chem Phys. 2009 Dec 14;11(46):10757-816 [PMID: 19924312]
  16. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  17. J Phys Chem A. 2010 Oct 7;114(39):10676-83 [PMID: 20831243]
  18. J Chem Theory Comput. 2011 Aug 9;7(8):2498-506 [PMID: 26606624]
  19. Chemistry. 2009 Mar 2;15(11):2560-71 [PMID: 19180595]
  20. J Phys Chem B. 2008 Mar 13;112(10):2842-7 [PMID: 18271574]
  21. J Chem Theory Comput. 2006 Sep;2(5):1325-34 [PMID: 26626840]
  22. J Chem Phys. 2010 Jan 14;132(2):024107 [PMID: 20095663]
  23. Angew Chem Int Ed Engl. 2004 Oct 4;43(39):5266-8 [PMID: 15455435]
  24. Acc Chem Res. 2005 Sep;38(9):691-704 [PMID: 16171312]
  25. Chemistry. 2011 May 9;17(20):5561-77 [PMID: 21495098]
  26. Inorg Chem. 2010 Jun 7;49(11):5180-9 [PMID: 20465244]
  27. Angew Chem Int Ed Engl. 2007;46(3):405-8 [PMID: 17146834]
  28. J Am Chem Soc. 2006 Aug 23;128(33):10819-32 [PMID: 16910677]
  29. J Chem Phys. 2006 Aug 7;125(5):054103 [PMID: 16942199]
  30. J Chem Phys. 2006 Dec 21;125(23):234109 [PMID: 17190549]
  31. J Chem Phys. 2007 Aug 21;127(7):074504 [PMID: 17718617]
  32. Angew Chem Int Ed Engl. 2009;48(42):7867-70 [PMID: 19760686]
  33. J Comput Chem. 2009 Oct;30(13):2056-63 [PMID: 19140141]
  34. Phys Chem Chem Phys. 2010 Mar 28;12(12):2929-34 [PMID: 20449383]
  35. J Phys Chem A. 2012 Jun 7;116(22):5392-7 [PMID: 22591243]
  36. Chem Commun (Camb). 2012 Oct 28;48(84):10395-7 [PMID: 22986301]
  37. Chem Commun (Camb). 2006 Jan 14;(2):131-4 [PMID: 16372084]
  38. J Am Chem Soc. 2004 Mar 31;126(12):3880-91 [PMID: 15038742]
  39. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7376-9 [PMID: 17036291]
  40. J Chem Theory Comput. 2012 Jan 10;8(1):203-13 [PMID: 26592882]
  41. Acc Chem Res. 2006 Jun;39(6):383-93 [PMID: 16784216]
  42. Inorg Chem. 2008 Jun 16;47(12):5245-52 [PMID: 18491889]
  43. J Phys Chem A. 2010 Aug 19;114(32):8474-9 [PMID: 20701356]
  44. J Am Chem Soc. 2007 Oct 3;129(39):11882-3 [PMID: 17845045]

MeSH Term

Coordination Complexes
Gases
Ligands
Models, Theoretical
Quantum Theory
Ruthenium

Chemicals

Coordination Complexes
Gases
Ligands
Ruthenium

Word Cloud

Created with Highcharts 10.0.0complexesfunctionalsFDAEShyperpolarisabilitiesthreeIIB3LYPB3P86M063βcomputeddensityfunctionaltheoryDFTabinitioaccuratemodellingobtainedcomplex[RuNH3MeQ+3+less4firststategas-phaseresultsusingRASPT2largeGSincreaseπ-conjugationrutheniumStaticexcited-statepolarisabilitiesRuammineseveralcorrelatedlevelslowenergyelectronicabsorptionspectrumhybrid5]=N-methyl-44'-bipyridiniumacetonitrilematchexperimentaldatagood5L]L=N-methylpyrazinium2N-methyl-4-{EE-4-4-pyridylbuta-13-dienyl}pyridiniumcalculationsconfirmdipole-allowedexcitedmetal-to-ligandcharge-transferMLCTcharactersolutionsimilarrestrictedactive-spaceSCFsecond-orderperturbationbasissetactivespaceHowevertime-dependentλmaxpredictionslong-rangecorrectedCAM-B3LYPLC-ωPBEwB97XBalsofullyresolutionidentityapproximatecoupled-clustermethodgroundtwo-stateapproximationhyperpolarisability2SAclosederivedexperimentallyviahyper-RayleighscatteringwhereascorrespondingDFT-basedvaluesconsiderablylargerresponsescalculatedmarkedlyextendsmovingalongseries2→4speciespredictsubstantialenhancementsincreasingsevenfoldAlsosecondγgenerallyvarydifferentTheoreticalphotoswitchingcaclulationsmolecularswitchesnonlinearoptics

Similar Articles

Cited By

No available data.