A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior.

Randall W Davis
Author Information
  1. Randall W Davis: Department of Marine Biology, Texas A&M University, OCSB, 200 Seawolf Parkway, Galveston, TX, 77553, USA, davisr@tamug.edu.

Abstract

Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal's aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.

References

  1. J Exp Biol. 1992 Sep;170:35-42 [PMID: 1402612]
  2. Respir Physiol. 1970 May;9(2):277-86 [PMID: 5445188]
  3. J Exp Biol. 2001 Nov;204(Pt 22):3877-85 [PMID: 11807105]
  4. Comp Biochem Physiol A Mol Integr Physiol. 2013 Jan;164(1):119-28 [PMID: 23085290]
  5. EMBO Rep. 2002 Dec;3(12):1146-51 [PMID: 12475928]
  6. J Comp Physiol B. 2006 Aug;176(6):535-45 [PMID: 16514541]
  7. J Comp Physiol B. 1990;160(5):473-82 [PMID: 2097298]
  8. J Exp Biol. 1992 Apr;165:181-94 [PMID: 1588250]
  9. Sports Med. 1991 Mar;11(3):133-42 [PMID: 2047621]
  10. J Cell Comp Physiol. 1959 Jun;53:393-411 [PMID: 13854685]
  11. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9413-8 [PMID: 11481497]
  12. Am J Physiol. 1980 Nov;239(5):R437-44 [PMID: 7435658]
  13. Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):2141-50 [PMID: 17472919]
  14. J Exp Biol. 2001 Jan;204(Pt 2):209-15 [PMID: 11136607]
  15. J Cell Comp Physiol. 1954 Feb;43(1):1-22 [PMID: 13130638]
  16. Science. 1999 Feb 12;283(5404):993-6 [PMID: 9974394]
  17. J Appl Physiol (1985). 1986 Oct;61(4):1560-9 [PMID: 3096941]
  18. Comp Biochem Physiol A Comp Physiol. 1975 Sep 1;52(1):63-6 [PMID: 240568]
  19. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Aug;198(8):583-91 [PMID: 22585422]
  20. Pflugers Arch. 1989 Feb;413(4):343-7 [PMID: 2928085]
  21. Science. 2000 Apr 7;288(5463):133-6 [PMID: 10753116]
  22. J Comp Physiol B. 2009 Nov;179(8):985-96 [PMID: 19565249]
  23. Compr Physiol. 2012 Jul;2(3):1889-919 [PMID: 23723028]
  24. J Exp Biol. 1999 Feb;202(Pt 3):227-36 [PMID: 9882635]
  25. Lancet. 1963 Apr 13;1(7285):785-9 [PMID: 13990765]
  26. J Appl Physiol (1985). 1985 Feb;58(2):392-9 [PMID: 3980347]
  27. J Cell Comp Physiol. 1961 Dec;58:261-5 [PMID: 14477361]
  28. Mol Biol Evol. 2002 Apr;19(4):416-21 [PMID: 11919282]
  29. Science. 1966 Mar 25;151(3717):1553-4 [PMID: 5909593]
  30. J Exp Biol. 1999 Oct;202(Pt 20):2749-61 [PMID: 10504311]
  31. Ann Surg. 2001 Apr;233(4):575-80 [PMID: 11303141]
  32. Respir Physiol. 1990 Feb;79(2):137-44 [PMID: 2336490]
  33. Respir Physiol. 1974 Mar;20(2):93-103 [PMID: 4826753]
  34. J Appl Physiol (1985). 1997 Jun;82(6):1989-94 [PMID: 9173968]
  35. Am J Physiol Regul Integr Comp Physiol. 2006 Oct;291(4):R1129-37 [PMID: 16675633]
  36. J Exp Biol. 1999 May;202(Pt 9):1091-113 [PMID: 10101108]
  37. J Comp Physiol B. 2007 Jan;177(1):89-98 [PMID: 16924524]
  38. J Appl Physiol (1985). 1996 Jan;80(1):298-306 [PMID: 8847318]
  39. J Exp Biol. 2003 Nov;206(Pt 22):4105-11 [PMID: 14555750]
  40. J Comp Physiol B. 1987;157(4):445-9 [PMID: 3668021]
  41. Can J Zool. 1973 Jul;51(7):671-80 [PMID: 4756147]
  42. J Appl Physiol Respir Environ Exerc Physiol. 1981 May;50(5):999-1005 [PMID: 7228773]
  43. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1715-23 [PMID: 17299080]
  44. J Appl Physiol (1985). 1999 Apr;86(4):1247-56 [PMID: 10194210]
  45. Am J Physiol. 1968 Jan;214(1):187-91 [PMID: 5634524]
  46. Biorheology. 2006;43(1):57-69 [PMID: 16627927]
  47. Gen Comp Endocrinol. 2003 Jan;130(1):78-83 [PMID: 12535628]
  48. Am J Physiol. 1986 Feb;250(2 Pt 2):R175-87 [PMID: 3511736]
  49. Crit Care Med. 1992 Sep;20(9):1330-4 [PMID: 1521449]
  50. J Comp Physiol B. 2001 Nov;171(8):635-42 [PMID: 11765972]
  51. J Neurol Sci. 1989 Dec;94(1-3):29-40 [PMID: 2614471]
  52. Respir Physiol. 1971 Aug;12(3):271-82 [PMID: 5136018]
  53. Science. 1957 Sep 13;126(3272):505 [PMID: 13467233]
  54. J Exp Biol. 2005 Mar;208(Pt 5):859-68 [PMID: 15755884]
  55. Am J Physiol Regul Integr Comp Physiol. 2012 Aug 1;303(3):R340-52 [PMID: 22673783]
  56. J Cell Comp Physiol. 1951 Oct;38(2):157-64 [PMID: 14897857]
  57. Comp Biochem Physiol B. 1978;59(2):99-102 [PMID: 318281]
  58. Sci Am. 1963 Dec;209:92-106 [PMID: 14088073]
  59. Comp Biochem Physiol B Biochem Mol Biol. 2004 Nov;139(3):509-18 [PMID: 15544972]
  60. Am J Physiol Regul Integr Comp Physiol. 2007 Dec;293(6):R2376-81 [PMID: 17913869]
  61. Physiol Rev. 1966 Apr;46(2):212-43 [PMID: 5325969]
  62. Physiol Biochem Zool. 2000 Nov-Dec;73(6):683-98 [PMID: 11121343]
  63. J Exp Biol. 2001 Jun;204(Pt 11):1831-44 [PMID: 11441026]
  64. Nature. 1964 May 23;202:809-10 [PMID: 14187632]
  65. Am J Physiol. 1983 Nov;245(5 Pt 1):R743-8 [PMID: 6638219]
  66. J Comp Physiol B. 2007 Feb;177(2):217-27 [PMID: 17089167]
  67. J Comp Physiol B. 2007 May;177(4):483-94 [PMID: 17294194]
  68. Proc Biol Sci. 2008 Apr 7;275(1636):751-8 [PMID: 18089537]
  69. Am J Physiol. 1963 Dec;205:1167-71 [PMID: 14084979]
  70. J Exp Biol. 2013 Sep 1;216(Pt 17):3332-41 [PMID: 23926312]
  71. Respir Physiol. 1983 Dec;54(3):269-94 [PMID: 6369460]
  72. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):968-73 [PMID: 511722]
  73. J Comp Physiol B. 2001 Mar;171(2):127-34 [PMID: 11302529]
  74. J Appl Physiol (1985). 2001 May;90(5):1919-26 [PMID: 11299286]
  75. Am J Clin Nutr. 2000 Aug;72(2 Suppl):558S-63S [PMID: 10919960]
  76. Comp Biochem Physiol A Mol Integr Physiol. 2001 Jul;129(4):759-70 [PMID: 11440863]
  77. J Comp Physiol B. 1991;160(6):627-35 [PMID: 2045543]
  78. J Exp Biol. 2002 Dec;205(Pt 23):3601-8 [PMID: 12409486]
  79. J Comp Physiol B. 1993;163(5):367-73 [PMID: 8254117]
  80. Neuroscience. 2009 Oct 6;163(2):552-60 [PMID: 19576963]
  81. Am J Physiol Regul Integr Comp Physiol. 2009 Oct;297(4):R927-39 [PMID: 19641132]
  82. Adv Comp Physiol Biochem. 1982;8:179-364 [PMID: 6753521]
  83. J Lipid Res. 1991 Jun;32(6):1013-23 [PMID: 1940617]
  84. Lancet. 2012 Jan 14;379(9811):165-80 [PMID: 21840587]
  85. J Exp Biol. 2000 Nov;203(Pt 21):3275-8 [PMID: 11023847]
  86. Physiol Zool. 1998 Sep-Oct;71(5):485-91 [PMID: 9754525]
  87. J Comp Physiol B. 1997 Jan;167(1):9-16 [PMID: 9051904]
  88. Respir Physiol. 1973 Nov;19(2):188-200 [PMID: 4763083]
  89. Physiol Biochem Zool. 2005 Nov-Dec;78(6):1057-68 [PMID: 16228944]
  90. Comp Biochem Physiol B Biochem Mol Biol. 2011 Aug;159(4):214-9 [PMID: 21596155]
  91. Annu Rev Physiol. 1998;60:19-32 [PMID: 9558452]
  92. Can J Zool. 1971 Jan;49(1):25-30 [PMID: 5543175]
  93. Physiol Rev. 1997 Jul;77(3):837-99 [PMID: 9234967]
  94. Science. 1981 May 1;212(4494):509-14 [PMID: 7209545]
  95. J Comp Physiol B. 2012 Apr;182(3):425-36 [PMID: 22001970]
  96. Biochem Soc Symp. 1976;(41):3-31 [PMID: 788718]
  97. J Comp Physiol B. 2010 Jun;180(5):757-66 [PMID: 20140678]
  98. Comp Biochem Physiol A Mol Integr Physiol. 1998 Apr;119(4):975-80 [PMID: 9773490]
  99. Can J Appl Physiol. 1997 Aug;22(4):307-27 [PMID: 9263616]
  100. Am J Physiol. 1982 Mar;242(3):G202-8 [PMID: 7065183]
  101. J Exp Biol. 2003 May;206(Pt 9):1461-70 [PMID: 12654885]
  102. Science. 2013 Jun 14;340(6138):1234192 [PMID: 23766330]
  103. Comp Biochem Physiol A Comp Physiol. 1973 Jul 1;45(3):731-6 [PMID: 4147925]
  104. J Exp Biol. 1997 Aug;200(Pt 15):2083-95 [PMID: 9255950]
  105. J Comp Physiol B. 2012 Aug;182(6):741-50 [PMID: 22327141]
  106. J Comp Physiol B. 2007 Aug;177(6):687-700 [PMID: 17576570]
  107. Rev Esp Fisiol. 1971 Dec;27(4):297-304 [PMID: 5173029]
  108. Respir Physiol. 1981 Apr;44(1):113-28 [PMID: 7232882]
  109. Am J Physiol. 1987 Aug;253(2 Pt 2):R344-51 [PMID: 3618833]
  110. J Exp Biol. 2006 Jul;209(Pt 13):2576-85 [PMID: 16788040]
  111. Mol Phylogenet Evol. 2013 Feb;66(2):469-78 [PMID: 22846683]
  112. J Comp Physiol B. 1991;160(6):637-44 [PMID: 2045544]
  113. J Appl Physiol (1985). 1995 Oct;79(4):1148-55 [PMID: 8567556]
  114. Am J Physiol. 1974 Dec;227(6):1331-5 [PMID: 4440777]
  115. J Endocrinol. 2011 Jun;209(3):317-25 [PMID: 21429964]
  116. Comp Biochem Physiol A Comp Physiol. 1972 Sep 1;43(1):31-6 [PMID: 4404585]
  117. J Exp Biol. 2004 Feb;207(Pt 6):973-82 [PMID: 14766956]
  118. J Exp Biol. 2003 Nov;206(Pt 22):4139-54 [PMID: 14555753]
  119. Science. 1966 Apr 22;152(3721):540-3 [PMID: 5910199]
  120. Neuroscience. 2012 Oct 25;223:35-44 [PMID: 22864183]
  121. Mol Biol Evol. 2012 Apr;29(4):1105-14 [PMID: 22115833]
  122. Phys Ther. 2001 Nov;81(11):1810-6 [PMID: 11694174]
  123. Comp Biochem Physiol C Toxicol Pharmacol. 2002 Dec;133(4):527-36 [PMID: 12458181]
  124. Diabetes. 1974 Nov;23(11):869-75 [PMID: 4372115]
  125. J Anat. 1999 May;194 ( Pt 4):505-17 [PMID: 10445819]
  126. J Exp Biol. 1983 Jul;105:283-95 [PMID: 6619727]
  127. Am J Physiol. 1958 Apr;193(1):161-8 [PMID: 13521003]
  128. Respir Physiol. 1973 Apr;17(3):283-90 [PMID: 4702979]

MeSH Term

Adaptation, Physiological
Aerobiosis
Animals
Diving
Globins
Homeostasis
Mammals
Mitochondria
Muscle, Skeletal
Oxygen

Chemicals

Globins
Oxygen

Word Cloud

Created with Highcharts 10.0.0aerobicdiveadaptationsdurationdivesmammalsbloodmuscleoxygenvolumeelevatedoxidativemarineMarinemulti-levelbiochemistrybehaviormaximizeefficientlimitdifferentmyoglobinhomogeneouslydistributedhighestareasproduceforceswimmingdensitiesenhancedenzymeactivitiesmitochondriamaintainmetabolismdivingdepthmaximizestimeminimizesenergyexhibitcellularresponseenablesusestoresexercisemodulatedlevelsexertionBloodconcentrationshemoglobinservesignificantstoreincreasesHoweverlocomotorymusclesgreaterconsumeMusclefibersprimarilyfastslowtwitchmitochondrialgenerationinterfibrillerreducesdiffusiondistancehelpshypoxicconditionsMitochondrialalsocertainorgansliverkidneysstomachHepaticrenalfunctionalongdigestionassimilationcontinuephysiologicalhomeostasisATPproductioncomesfatcarnivorousGlucosederivedmostlygluconeogenesisconservedtissuesredcellscentralnervoussystemminimizeenergeticcostbodystreamlininglift-basedpropulsiveappendagescost-efficientmodeslocomotionreducedragtakeadvantagechangesbuoyancywithinanimal'sunderwaterrecoverysurfaceresultincreasedbreath-holdforagingabilityintakeoutputmakinglongevolutionarylegacyaquaticlifestyledirectlyaffectsfitnessmammalspeciesabilitiesenvironmentsreviewmaximizingmammals:

Similar Articles

Cited By