Bayesian spatial transformation models with applications in neuroimaging data.

Michelle F Miranda, Hongtu Zhu, Joseph G Ibrahim
Author Information
  1. Michelle F Miranda: Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.

Abstract

The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder.

Keywords

References

  1. Psychiatry Res. 2009 Nov 30;174(2):81-8 [PMID: 19833485]
  2. Neuroimage. 2001 Dec;14(6):1361-9 [PMID: 11707092]
  3. Biostatistics. 2010 Apr;11(2):177-94 [PMID: 20089508]
  4. Neuroimage. 2013 Feb 1;66:270-7 [PMID: 23110886]
  5. J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578 [PMID: 21860598]
  6. Biometrics. 2001 Jun;57(2):554-62 [PMID: 11414583]
  7. Neuroimage. 2005 Jan 15;24(2):350-62 [PMID: 15627578]
  8. Ann Stat. 2012 Oct 1;40(5):2634-2666 [PMID: 23645942]
  9. Lancet. 2003 Nov 22;362(9397):1699-707 [PMID: 14643117]
  10. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  11. Neuroimage. 2005 Jun;26(2):546-54 [PMID: 15907311]
  12. Biometrics. 2009 Sep;65(3):919-27 [PMID: 18945269]
  13. Neuroimage. 2008 Jan 1;39(1):146-56 [PMID: 17936016]
  14. Neuroimage. 2002 Oct;17(2):1027-30 [PMID: 12377176]
  15. Neuroimage. 2005 May 15;26(1):99-113 [PMID: 15862210]
  16. Neuroimage. 2004;23 Suppl 1:S189-95 [PMID: 15501088]
  17. Neuroimage. 2003 Jul;19(3):1014-32 [PMID: 12880829]

Grants

  1. AG033387/NIA NIH HHS
  2. R01GM070335/NIGMS NIH HHS
  3. TL1 RR025745/NCRR NIH HHS
  4. P01CA142538-01/NCI NIH HHS
  5. R01 MH086633/NIMH NIH HHS
  6. R01 GM070335/NIGMS NIH HHS
  7. RR025747-01/NCRR NIH HHS
  8. P01 CA142538/NCI NIH HHS
  9. P50 CA106991/NCI NIH HHS
  10. R01 CA074015/NCI NIH HHS
  11. MH086633/NIMH NIH HHS
  12. UL1 RR025747/NCRR NIH HHS
  13. T32 CA106209/NCI NIH HHS
  14. P01CA142538/NCI NIH HHS

MeSH Term

Attention Deficit Disorder with Hyperactivity
Bayes Theorem
Brain
Child
Computer Simulation
Humans
Image Interpretation, Computer-Assisted
Models, Statistical
Nerve Net
Neuroimaging
Pattern Recognition, Automated
Spatio-Temporal Analysis

Word Cloud

Created with Highcharts 10.0.0datatransformationSTMmodelspatialimagingGaussianMarkovmodelsvaryingBox-CoxrandomfieldanalysisBayesianaimarticledevelopclassspatiallyassociationmeasuresthree-dimensional3Dvolume2Dsurfacesetcovariatesproposedincludedealingissuenon-GaussiandistributedincorporatingsmoothnessPosteriorcomputationproceedsviaefficientchainMonteCarloalgorithmSimulationsrealdemonstratesignificantlyoutperformsvoxel-wiselinearnoiserecoveringmeaningfulgeometricpatternsablerevealimportantbrainregionsmorphologicalchangeschildrenattentiondeficithyperactivitydisorderapplicationsneuroimagingBigMCMCNeuroimaging

Similar Articles

Cited By