Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

Kai Xu, Barry Rockx, Yihu Xie, Blair L DeBuysscher, Deborah L Fusco, Zhongyu Zhu, Yee-Peng Chan, Yan Xu, Truong Luu, Regina Z Cer, Heinz Feldmann, Vishwesh Mokashi, Dimiter S Dimitrov, Kimberly A Bishop-Lilly, Christopher C Broder, Dimitar B Nikolov
Author Information
  1. Kai Xu: Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America.

Abstract

The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

References

  1. PLoS Pathog. 2010 Jun 24;6(6):e1000881 [PMID: 20585631]
  2. Nat Rev Microbiol. 2006 Jan;4(1):23-35 [PMID: 16357858]
  3. Nature. 2012 Sep 27;489(7417):526-32 [PMID: 22982990]
  4. J Biol Chem. 2006 Jun 9;281(23):15829-36 [PMID: 16597622]
  5. PLoS One. 2012;7(11):e48742 [PMID: 23144952]
  6. Microbes Infect. 2001 Apr;3(4):307-14 [PMID: 11334748]
  7. Emerg Infect Dis. 2010 Feb;16(2):219-23 [PMID: 20113550]
  8. J Virol. 2010 Aug;84(16):8098-110 [PMID: 20538861]
  9. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  10. J Virol. 2010 Oct;84(19):9831-9 [PMID: 20660198]
  11. J Virol. 2010 Jun;84(12):6208-17 [PMID: 20375167]
  12. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9953-8 [PMID: 18632560]
  13. Emerg Infect Dis. 2009 Aug;15(8):1229-35 [PMID: 19751584]
  14. Epidemiol Infect. 2010 Nov;138(11):1630-6 [PMID: 20380769]
  15. J Infect Dis. 2008 Mar 15;197(6):846-53 [PMID: 18271743]
  16. Trends Microbiol. 2011 Aug;19(8):389-99 [PMID: 21511478]
  17. Vector Borne Zoonotic Dis. 2012 Jan;12(1):65-72 [PMID: 21923274]
  18. J Manag Care Pharm. 2010 Jan-Feb;16(1):46-58 [PMID: 20131495]
  19. Immunity. 2012 Sep 21;37(3):412-25 [PMID: 22999947]
  20. PLoS Pathog. 2009 Oct;5(10):e1000642 [PMID: 19888339]
  21. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14216-21 [PMID: 21825125]
  22. Curr Opin Virol. 2012 Apr;2(2):176-87 [PMID: 22482714]
  23. J Virol. 2011 Mar;85(6):2524-35 [PMID: 21191009]
  24. Sci Transl Med. 2011 Oct 19;3(105):105ra103 [PMID: 22013123]
  25. Med J Aust. 1995 Jun 19;162(12):642-5 [PMID: 7603375]
  26. J Virol. 2006 Jan;80(2):891-9 [PMID: 16378991]
  27. J Virol. 2008 Dec;82(23):11628-36 [PMID: 18815311]
  28. Nat Struct Mol Biol. 2008 Jun;15(6):567-72 [PMID: 18488039]
  29. Immunol Rev. 2012 Nov;250(1):180-98 [PMID: 23046130]
  30. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11483-8 [PMID: 20534513]
  31. Neuropathol Appl Neurobiol. 2009 Jun;35(3):296-305 [PMID: 19473296]
  32. Viruses. 2012 Feb;4(2):280-308 [PMID: 22470837]
  33. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  34. J Biol Chem. 2006 Nov 10;281(45):34610-6 [PMID: 16954221]
  35. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  36. Emerg Infect Dis. 2007 Jul;13(7):1031-7 [PMID: 18214175]

Grants

  1. AI054715/NIAID NIH HHS
  2. R01 AI054715/NIAID NIH HHS
  3. /Intramural NIH HHS
  4. NS38586/NINDS NIH HHS
  5. R01 NS038586/NINDS NIH HHS
  6. AI077995/NIAID NIH HHS
  7. U01 AI077995/NIAID NIH HHS

MeSH Term

Antibodies, Monoclonal
Antibodies, Neutralizing
Antibodies, Viral
Cell Line
Cross Reactions
Crystallography, X-Ray
Hendra Virus
Henipavirus Infections
Humans
Protein Structure, Quaternary
Protein Structure, Tertiary
Viral Fusion Proteins

Chemicals

Antibodies, Monoclonal
Antibodies, Neutralizing
Antibodies, Viral
Viral Fusion Proteins

Word Cloud

Created with Highcharts 10.0.0m102HeVNiV4glycoproteinhumanstructurehenipavirusesHendrahostinfectionhumansentryattachmentGmonoclonalhmAbHeV-Gantibodycross-reactiveusedevelopmentrepresentedNipahviruseshighlypathogeniczoonoticparamyxovirusesuniquelybroadtropismsresponsiblerepeatedoutbreaksAustraliaSoutheastAsiaIndiaBangladeshhighmorbiditymortalityratesassociatedlacklicensedantiviraltherapiesmakepotentialbiologicalthreatlivestockHenipavirusinitiatedenvelopecellmembranereceptorsPreviouslyhenipavirus-neutralizingantibodiesisolatedusingnaïvelibraryOnereceptor-blockingrecentlydemonstratedeffectivepost-exposuretherapytwoanimalmodelsusedseveralpeoplecompassionatebasiscurrentlyreportcrystalcomplex3derivativedescribeescapemutantsprovidesdetailedinsightmechanismneutralizationservesblueprintoptimizationtherapeuticagentinhibitorsvaccinesCrystalvirusboundpotentneutralizing

Similar Articles

Cited By (42)