Adherence to a web-based physical activity intervention for patients with knee and/or hip osteoarthritis: a mixed method study.

Daniël Bossen, Michelle Buskermolen, Cindy Veenhof, Dinny de Bakker, Joost Dekker
Author Information
  1. Daniël Bossen: Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands. d.bossen@nivel.nl.

Abstract

BACKGROUND: Web-based interventions show promise in promoting a healthy lifestyle, but their effectiveness is hampered by high rates of nonusage. Predictors and reasons for (non)usage are not well known. Identifying which factors are related to usage contributes to the recognition of subgroups who benefit most from Web-based interventions and to the development of new strategies to increase usage.
OBJECTIVE: The aim of this mixed methods study was to explore patient, intervention, and study characteristics that facilitate or impede usage of a Web-based physical activity intervention for patients with knee and/or hip osteoarthritis.
METHODS: This study is part of a randomized controlled trial that investigated the effects of Web-based physical activity intervention. A total of 199 participants between 50-75 years of age with knee and/or hip osteoarthritis were randomly assigned to a Web-based intervention (n=100) or a waiting list (n=99). This mixed methods study used only data from the individuals allocated to the intervention group. Patients were defined as users if they completed at least 6 out of 9 modules. Logistic regression analyses with a stepwise backward selection procedure were executed to build a multivariate prediction usage model. For the qualitative part, semistructured interviews were conducted. Both inductive and deductive analyses were used to identify patterns in reported reasons for nonusage.
RESULTS: Of the 100 participants who received a password and username, 46 completed 6 modules or more. Multivariate regression analyses revealed that higher age (OR 0.94, P=.08) and the presence of a comorbidity (OR 0.33, P=.02) predicted nonusage. The sensitivity analysis indicated that the model was robust to changes in the usage parameter. Results from the interviews showed that a lack of personal guidance, insufficient motivation, presence of physical problems, and low mood were reasons for nonusage. In addition, the absence of human involvement was viewed as a disadvantage and it negatively impacted program usage. Factors that influenced usage positively were trust in the program, its reliability, functionality of the intervention, social support from family or friends, and commitment to the research team.
CONCLUSIONS: In this mixed methods study, we found patient, intervention, and study factors that were important in the usage and nonusage of a Web-based PA intervention for patients with knee and/or hip osteoarthritis. Although the self-guided components offer several advantages, particularly in relation to costs, reach, and access, we found that older patients and participants with a comorbid condition need a more personal approach. For these groups the integration of Web-based interventions in a health care environment seems to be promising.

Keywords

References

  1. J Med Internet Res. 2010 Sep 02;12(3):e37 [PMID: 20813716]
  2. J Med Internet Res. 2009 Jul 28;11(3):e23 [PMID: 19666456]
  3. J Med Internet Res. 2012 Mar 01;14(2):e40 [PMID: 22382037]
  4. Arthritis Rheum. 2003 Feb 15;49(1):122-8 [PMID: 12579603]
  5. J Med Internet Res. 2012 Jun 22;14(3):e91 [PMID: 22743581]
  6. J Clin Epidemiol. 1993 Feb;46(2):153-62 [PMID: 8437031]
  7. Scand J Rheumatol. 2003;32(1):46-51 [PMID: 12635946]
  8. Acta Psychiatr Scand. 1983 Jun;67(6):361-70 [PMID: 6880820]
  9. Arthritis Rheum. 1989 Jan;32(1):37-44 [PMID: 2912463]
  10. Ann Intern Med. 2000 Oct 17;133(8):635-46 [PMID: 11033593]
  11. J Med Internet Res. 2013 Feb 05;15(2):e19 [PMID: 23470322]
  12. Health Educ Monogr. 1978 Spring;6(2):160-70 [PMID: 689890]
  13. Int J Behav Nutr Phys Act. 2009 Mar 27;6:18 [PMID: 19327141]
  14. J Med Internet Res. 2012 Oct 30;14(5):e145 [PMID: 23111127]
  15. Osteoarthritis Cartilage. 2009 Jan;17(1):132 [PMID: 18620874]
  16. BMC Med Inform Decis Mak. 2013 May 28;13:61 [PMID: 23714120]
  17. J Med Internet Res. 2010 Dec 14;12(4):e69 [PMID: 21156470]
  18. J Med Internet Res. 2010 Feb 10;12(1):e3 [PMID: 20147006]
  19. Int J Behav Med. 2003;10(4):343-63 [PMID: 14734263]
  20. J Med Internet Res. 2011 Feb 14;13(1):e17 [PMID: 21320854]
  21. J Med Internet Res. 2011 Jan 25;13(1):e9 [PMID: 21371992]
  22. Semin Arthritis Rheum. 1997 Jun;26(6):805-16 [PMID: 9213379]
  23. J Med Internet Res. 2012 Mar 05;14(2):e43 [PMID: 22390886]
  24. J Med Internet Res. 2012 Nov 14;14(6):e152 [PMID: 23151820]
  25. J Med Internet Res. 2011 Jan 06;13(1):e2 [PMID: 21212045]
  26. J Med Internet Res. 2005 Mar 31;7(1):e11 [PMID: 15829473]
  27. J Med Internet Res. 2012 Feb 22;14(1):e36 [PMID: 22356829]
  28. Rheumatology (Oxford). 2005 Jan;44(1):67-73 [PMID: 15353613]
  29. J Med Internet Res. 2007 May 09;9(2):e11 [PMID: 17513282]
  30. BMC Health Serv Res. 2007 Dec 19;7:206 [PMID: 18093289]
  31. Arthritis Rheum. 2006 Dec 15;55(6):925-34 [PMID: 17139639]
  32. Health Qual Life Outcomes. 2008 Feb 26;6:16 [PMID: 18302729]
  33. J Med Internet Res. 2010 Sep 30;12(3):e44 [PMID: 20921001]
  34. J Med Internet Res. 2007 Jan 22;9(1):e1 [PMID: 17478410]
  35. Health Qual Life Outcomes. 2003 Nov 03;1:64 [PMID: 14613558]
  36. Arthritis Rheum. 2003 Feb 15;49(1):129-35 [PMID: 12579604]
  37. J Med Internet Res. 2010 Mar 29;12(1):e9 [PMID: 20350926]
  38. J Med Internet Res. 2011 Apr 14;13(2):e32 [PMID: 21493191]
  39. Arthritis Rheum. 2006 Dec 15;55(6):935-45 [PMID: 17139640]

MeSH Term

Aged
Guideline Adherence
Humans
Internet
Middle Aged
Motor Activity
Osteoarthritis, Hip
Osteoarthritis, Knee

Word Cloud

Created with Highcharts 10.0.0usageinterventionWeb-basedstudynonusagemixedphysicalpatientskneeand/orhipinterventionsreasonsmethodsactivityosteoarthritisparticipantsanalysesfactorspatientpartageusedcompleted6modulesregressionmodelinterviewsOR0P=presencepersonalprogramfoundmethodBACKGROUND:showpromisepromotinghealthylifestyleeffectivenesshamperedhighratesPredictorsnonwellknownIdentifyingrelatedcontributesrecognitionsubgroupsbenefitdevelopmentnewstrategiesincreaseOBJECTIVE:aimexplorecharacteristicsfacilitateimpedeMETHODS:randomizedcontrolledtrialinvestigatedeffectstotal19950-75yearsrandomlyassignedn=100waitinglistn=99dataindividualsallocatedgroupPatientsdefinedusersleast9LogisticstepwisebackwardselectionprocedureexecutedbuildmultivariatepredictionqualitativesemistructuredconductedinductivedeductiveidentifypatternsreportedRESULTS:100receivedpasswordusername46Multivariaterevealedhigher9408comorbidity3302predictedsensitivityanalysisindicatedrobustchangesparameterResultsshowedlackguidanceinsufficientmotivationproblemslowmoodadditionabsencehumaninvolvementvieweddisadvantagenegativelyimpactedFactorsinfluencedpositivelytrustreliabilityfunctionalitysocialsupportfamilyfriendscommitmentresearchteamCONCLUSIONS:importantPAAlthoughself-guidedcomponentsofferseveraladvantagesparticularlyrelationcostsreachaccessoldercomorbidconditionneedapproachgroupsintegrationhealthcareenvironmentseemspromisingAdherenceweb-basedosteoarthritis:adherence

Similar Articles

Cited By