Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.
Ravinder K Goyal, Robert E W Hancock, Autar K Mattoo, Santosh Misra
Author Information
Ravinder K Goyal: Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
中文译文
English
Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.
Int Rev Cell Mol Biol. 2008;270:87-144
[PMID: 19081535 ]
Transgenic Res. 2004 Apr;13(2):181-90
[PMID: 15198205 ]
Trends Plant Sci. 2000 Jun;5(6):241-6
[PMID: 10838614 ]
Front Immunol. 2012 Oct 25;3:325
[PMID: 23112800 ]
Curr Opin Plant Biol. 2002 Aug;5(4):325-31
[PMID: 12179966 ]
Funct Plant Biol. 2012 Apr;39(3):246-254
[PMID: 32480778 ]
Amino Acids. 2012 Feb;42(2-3):843-56
[PMID: 21814797 ]
Theor Appl Genet. 2005 Aug;111(4):711-22
[PMID: 15947906 ]
Science. 2004 Aug 6;305(5685):855-8
[PMID: 15297671 ]
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D590-2
[PMID: 14681488 ]
Nat Biotechnol. 2000 Nov;18(11):1162-6
[PMID: 11062434 ]
Annu Rev Phytopathol. 2011;49:317-43
[PMID: 21663438 ]
Annu Rev Plant Biol. 2010;61:443-62
[PMID: 20192746 ]
Antimicrob Agents Chemother. 2005 Jul;49(7):2845-50
[PMID: 15980359 ]
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849-55
[PMID: 10922045 ]
Nat Genet. 2011 May;43(5):421-7
[PMID: 21441932 ]
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20373-8
[PMID: 23185001 ]
J Exp Bot. 2013 Feb;64(4):1145-52
[PMID: 23349140 ]
Curr Opin Plant Biol. 2002 Aug;5(4):339-44
[PMID: 12179968 ]
FEBS Lett. 2001 Jun 8;498(2-3):219-22
[PMID: 11412861 ]
Plant J. 1999 Oct;20(2):135-142
[PMID: 10571873 ]
Annu Rev Phytopathol. 2012;50:267-94
[PMID: 22726121 ]
Virology. 1961 Jul;14:340-58
[PMID: 13743578 ]
Science. 2011 Jul 29;333(6042):596-601
[PMID: 21798943 ]
Plant Physiol. 2013 Mar;161(3):1433-44
[PMID: 23335625 ]
Plant Physiol. 2012 Feb;158(2):844-53
[PMID: 22147520 ]
Photosynth Res. 2002;73(1-3):149-56
[PMID: 16245116 ]
Curr Protein Pept Sci. 2005 Feb;6(1):85-101
[PMID: 15638771 ]
J Exp Bot. 2008;59(9):2437-48
[PMID: 18487634 ]
Nat Biotechnol. 2000 Dec;18(12):1307-10
[PMID: 11101813 ]
Plant Physiol. 1999 Dec;121(4):1375-82
[PMID: 10594125 ]
Mol Plant Microbe Interact. 2009 May;22(5):487-97
[PMID: 19348567 ]
Appl Environ Microbiol. 1977 Oct;34(4):424-32
[PMID: 21613 ]
Biochem J. 2003 Feb 15;370(Pt 1):121-7
[PMID: 12435273 ]
Nat Rev Immunol. 2012 Jan 25;12(2):89-100
[PMID: 22273771 ]
J Biol Chem. 1996 Aug 30;271(35):21012-9
[PMID: 8702864 ]
Plant Physiol. 2001 Dec;127(4):1449-58
[PMID: 11743088 ]
Plant Physiol. 2002 Jun;129(2):661-77
[PMID: 12068110 ]
Mol Plant Pathol. 2008 May;9(3):329-38
[PMID: 18705874 ]
Plant Physiol. 2007 Nov;145(3):890-904
[PMID: 17905862 ]
J Leukoc Biol. 2004 Jan;75(1):39-48
[PMID: 12960280 ]
Plant Mol Biol. 2006 Jul;61(4-5):733-46
[PMID: 16897488 ]
Plant Physiol. 2006 Jun;141(2):341-5
[PMID: 16760485 ]
Biochem Res Int. 2011;2011:250349
[PMID: 21403856 ]
Annu Rev Phytopathol. 2007;45:101-27
[PMID: 17352660 ]
PLoS One. 2012;7(8):e42036
[PMID: 22870280 ]
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20119-23
[PMID: 23175786 ]
Nature. 2003 May 1;423(6935):74-7
[PMID: 12721627 ]
Annu Rev Plant Biol. 2004;55:373-99
[PMID: 15377225 ]
Plant Physiol. 2005 Apr;137(4):1445-55
[PMID: 15778464 ]
Immunol Rev. 2004 Apr;198:249-66
[PMID: 15199967 ]
Plant J. 2006 Sep;47(6):851-63
[PMID: 16889645 ]
Plant Mol Biol. 2001 Jul;46(5):521-9
[PMID: 11516145 ]
Plant Cell. 2012 Dec;24(12):5123-41
[PMID: 23221596 ]
Curr Protein Pept Sci. 2007 Oct;8(5):446-59
[PMID: 17979760 ]
Mol Plant Microbe Interact. 2012 Dec;25(12):1584-93
[PMID: 22950753 ]
J Exp Bot. 2011 Aug;62(12):4323-36
[PMID: 21565983 ]
Plant Physiol. 2012 Feb;158(2):1034-45
[PMID: 22128140 ]
Curr Opin Plant Biol. 2009 Aug;12(4):427-36
[PMID: 19394891 ]
Proc Natl Acad Sci U S A. 1999 May 25;96(11):6553-7
[PMID: 10339626 ]
Antimicrob Agents Chemother. 2005 May;49(5):1727-32
[PMID: 15855488 ]
J Biol Chem. 1992 Feb 5;267(4):2810-6
[PMID: 1733975 ]
Cell Death Differ. 2011 Aug;18(8):1247-56
[PMID: 21475301 ]
Cell. 2006 Feb 24;124(4):803-14
[PMID: 16497589 ]
Nat Rev Microbiol. 2005 Mar;3(3):238-50
[PMID: 15703760 ]
Plant Cell Environ. 2006 Jun;29(6):1061-76
[PMID: 17080933 ]
Virulence. 2010 Sep-Oct;1(5):440-64
[PMID: 21178486 ]
Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10535-40
[PMID: 15249656 ]
Int J Mol Sci. 2011;12(6):3723-39
[PMID: 21747702 ]
J Biol Chem. 2002 Mar 22;277(12):10555-61
[PMID: 11748215 ]
Curr Opin Plant Biol. 2005 Aug;8(4):397-403
[PMID: 15939662 ]
Plant Physiol. 2000 Apr;122(4):1379-85
[PMID: 10759534 ]
Mol Plant Microbe Interact. 1999 Jan;12(1):16-23
[PMID: 9885189 ]
Plant J. 2010 Jun 1;62(5):876-85
[PMID: 20230509 ]
Science. 1995 Dec 15;270(5243):1804-6
[PMID: 8525370 ]
Plant Physiol. 2012 Jan;158(1):252-63
[PMID: 22080603 ]
Mol Plant Microbe Interact. 2012 Jan;25(1):85-96
[PMID: 22150075 ]
Annu Rev Phytopathol. 2013;51:155-76
[PMID: 23682917 ]
Mol Plant Microbe Interact. 2002 Jan;15(1):27-34
[PMID: 11858171 ]
Plant Physiol. 2001 Nov;127(3):876-86
[PMID: 11706170 ]
Trends Plant Sci. 2012 Feb;17(2):73-90
[PMID: 22209038 ]
Mol Plant Pathol. 2013 May;14(4):342-55
[PMID: 23279078 ]
Nature. 2002 Jan 24;415(6870):389-95
[PMID: 11807545 ]
PLoS One. 2008;3(11):e3699
[PMID: 19002244 ]
Plant Physiol. 1999 Sep;121(1):135-46
[PMID: 10482668 ]
Ann Bot. 2003 Jan;91 Spec No:179-94
[PMID: 12509339 ]
Nat Rev Microbiol. 2004 Sep;2(9):727-38
[PMID: 15372083 ]
Nat Biotechnol. 2007 Apr;25(4):465-72
[PMID: 17384586 ]
Curr Opin Plant Biol. 2006 Aug;9(4):436-42
[PMID: 16759898 ]
Plant J. 2009 Apr;58(2):347-60
[PMID: 19143995 ]
Plant Physiol. 2002 Mar;128(3):951-61
[PMID: 11891250 ]
Plant Cell Environ. 2010 Apr;33(4):453-67
[PMID: 19712065 ]
Plant Biol (Stuttg). 2006 Jan;8(1):1-10
[PMID: 16435264 ]
J Exp Bot. 2012 Jun;63(10):3523-43
[PMID: 22467407 ]
Curr Opin Plant Biol. 2009 Aug;12(4):414-20
[PMID: 19608450 ]
Plant J. 2003 Dec;36(5):629-42
[PMID: 14617064 ]
Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275
[PMID: 15012264 ]
Trends Plant Sci. 2003 Jul;8(7):335-42
[PMID: 12878018 ]
Aging
Antimicrobial Cationic Peptides
Cyclopentanes
Disease Resistance
Flowers
Fusarium
Gene Expression
Gene Expression Regulation, Plant
Oxidative Stress
Oxylipins
Phenotype
Plants, Genetically Modified
Salicylic Acid
Solanum tuberosum
Antimicrobial Cationic Peptides
Cyclopentanes
Oxylipins
jasmonic acid
Salicylic Acid