A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer.

David I Hastie, Silvia Liverani, Lamiae Azizi, Sylvia Richardson, Isabelle Stücker
Author Information
  1. Sylvia Richardson: MRC Biostatistics Unit, Cambridge, UK. sylvia.richardson@mrc-bsu.cam.ac.uk.

Abstract

BACKGROUND: A common characteristic of environmental epidemiology is the multi-dimensional aspect of exposure patterns, frequently reduced to a cumulative exposure for simplicity of analysis. By adopting a flexible Bayesian clustering approach, we explore the risk function linking exposure history to disease. This approach is applied here to study the relationship between different smoking characteristics and lung cancer in the framework of a population based case control study.
METHODS: Our study includes 4658 males (1995 cases, 2663 controls) with full smoking history (intensity, duration, time since cessation, pack-years) from the ICARE multi-centre study conducted from 2001-2007. We extend Bayesian clustering techniques to explore predictive risk surfaces for covariate profiles of interest.
RESULTS: We were able to partition the population into 12 clusters with different smoking profiles and lung cancer risk. Our results confirm that when compared to intensity, duration is the predominant driver of risk. On the other hand, using pack-years of cigarette smoking as a single summary leads to a considerable loss of information.
CONCLUSIONS: Our method estimates a disease risk associated to a specific exposure profile by robustly accounting for the different dimensions of exposure and will be helpful in general to give further insight into the effect of exposures that are accumulated through different time patterns.

References

  1. Am J Hum Genet. 2001 Jul;69(1):138-47 [PMID: 11404819]
  2. Am J Epidemiol. 2007 Aug 15;166(4):479-89 [PMID: 17548786]
  3. Genet Epidemiol. 2012 Sep;36(6):663-74 [PMID: 22851500]
  4. Cancer Epidemiol Biomarkers Prev. 2005 Oct;14(10):2296-302 [PMID: 16214908]
  5. Epidemiology. 2007 Mar;18(2):199-207 [PMID: 17272963]
  6. Eur Respir J. 2012 Jun;39(6):1304-12 [PMID: 22075480]
  7. Environ Health Perspect. 2011 Jan;119(1):84-91 [PMID: 20920953]
  8. Am J Epidemiol. 2010 Feb 1;171(3):323-33 [PMID: 20047975]
  9. IARC Sci Publ. 1986;(74):23-33 [PMID: 3623669]
  10. Am J Epidemiol. 2002 Nov 1;156(9):813-23 [PMID: 12396999]
  11. Cancer Causes Control. 2012 Jul;23(7):1113-26 [PMID: 22610667]
  12. Br J Cancer. 2012 Jul 24;107(3):406-7 [PMID: 22828655]
  13. Clin Cancer Res. 2007 Oct 1;13(19):5974-81 [PMID: 17908995]
  14. Clin Endocrinol (Oxf). 2009 May;70(5):717-24 [PMID: 18778399]
  15. Biostatistics. 2010 Jul;11(3):484-98 [PMID: 20350957]
  16. Stat Med. 2007 Apr 30;26(9):2088-112 [PMID: 16906554]
  17. Int J Cancer. 2012 Sep 1;131(5):1210-9 [PMID: 22052329]
  18. Genet Epidemiol. 2000 Dec;19(4):323-32 [PMID: 11108642]
  19. BMC Public Health. 2011 Dec 14;11:928 [PMID: 22171573]
  20. Ann Behav Med. 2003 Dec;26(3):172-81 [PMID: 14644693]

MeSH Term

Adenocarcinoma
Bayes Theorem
Case-Control Studies
Data Interpretation, Statistical
Environmental Exposure
Humans
Lung Neoplasms
Male
Models, Statistical
Multivariate Analysis
Odds Ratio
Risk Factors
Sensitivity and Specificity
Smoking

Word Cloud

Created with Highcharts 10.0.0exposurerisksmokingstudydifferentapproachlungcancermulti-dimensionalpatternsBayesianclusteringexplorehistorydiseasepopulationintensitydurationtimepack-yearsprofilesassociatedBACKGROUND:commoncharacteristicenvironmentalepidemiologyaspectfrequentlyreducedcumulativesimplicityanalysisadoptingflexiblefunctionlinkingappliedrelationshipcharacteristicsframeworkbasedcasecontrolMETHODS:includes4658males1995cases2663controlsfullsincecessationICAREmulti-centreconducted2001-2007extendtechniquespredictivesurfacescovariateinterestRESULTS:ablepartition12clustersresultsconfirmcomparedpredominantdriverhandusingcigarettesinglesummaryleadsconsiderablelossinformationCONCLUSIONS:methodestimatesspecificprofilerobustlyaccountingdimensionswillhelpfulgeneralgiveinsighteffectexposuresaccumulatedsemi-parametricestimatefunctionsprofiles:application

Similar Articles

Cited By