Learning to read an alphabet of human faces produces left-lateralized training effects in the fusiform gyrus.

Michelle W Moore, Corrine Durisko, Charles A Perfetti, Julie A Fiez
Author Information
  1. Michelle W Moore: University of Pittsburgh.

Abstract

Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face-phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech.

References

  1. Brain Lang. 1994 Aug;47(2):233-68 [PMID: 7953616]
  2. Brain Lang. 1993 Jul;45(1):70-85 [PMID: 8353731]
  3. Neuron. 2007 Jul 5;55(1):143-56 [PMID: 17610823]
  4. Child Dev. 1985 Dec;56(6):1404-17 [PMID: 3878269]
  5. Cereb Cortex. 2006 Oct;16(10):1453-61 [PMID: 16339084]
  6. Hum Brain Mapp. 2005 May;25(1):92-104 [PMID: 15846818]
  7. Dev Sci. 2006 Sep;9(5):429-36 [PMID: 16911438]
  8. Neuron. 2002 Apr 25;34(3):479-90 [PMID: 11988177]
  9. Brain Lang. 2014 Feb;129:7-13 [PMID: 24463310]
  10. Ciba Found Symp. 1991;163:125-40; discussion 140-4 [PMID: 1667751]
  11. J Comput Assist Tomogr. 1993 Jul-Aug;17(4):536-46 [PMID: 8331222]
  12. Proc Biol Sci. 2005 Feb 7;272(1560):267-75 [PMID: 15705551]
  13. J Comput Assist Tomogr. 1992 Jul-Aug;16(4):620-33 [PMID: 1629424]
  14. Cereb Cortex. 2011 Oct;21(10):2307-12 [PMID: 21368088]
  15. Cereb Cortex. 2007 Jul;17(7):1604-11 [PMID: 16956978]
  16. Brain Lang. 2008 Feb;104(2):180-9 [PMID: 17531309]
  17. Cereb Cortex. 2003 Dec;13(12):1313-33 [PMID: 14615297]
  18. Philos Trans R Soc Lond B Biol Sci. 2006 Dec 29;361(1476):2109-28 [PMID: 17118927]
  19. Brain Cogn. 1993 Jul;22(2):199-212 [PMID: 8373573]
  20. Neuroimage. 2005 Sep;27(3):694-705 [PMID: 15961322]
  21. Neuroinformatics. 2003;1(1):111-25 [PMID: 15055396]
  22. Cereb Cortex. 2013 Apr;23(4):988-1001 [PMID: 22505661]
  23. Brain Dev. 2001 Aug;23(5):312-6 [PMID: 11504602]
  24. Cereb Cortex. 2013 Jul;23(7):1673-84 [PMID: 22693338]
  25. Neuroimage. 2003 Jul;19(3):473-81 [PMID: 12880781]
  26. J Exp Psychol Hum Percept Perform. 2006 Aug;32(4):1023-39 [PMID: 16846295]
  27. Brain. 1996 Aug;119 ( Pt 4):1221-38 [PMID: 8813285]
  28. Psychiatry Res. 2009 Aug 15;168(3):242-9 [PMID: 19564050]
  29. Trends Cogn Sci. 2003 Jul;7(7):293-299 [PMID: 12860187]
  30. J Int Neuropsychol Soc. 1998 Nov;4(6):636-47 [PMID: 10050368]
  31. Neuroimage. 2005 Aug 1;27(1):37-47 [PMID: 16023039]
  32. Neuroimage. 2002 Jul;16(3 Pt 1):765-80 [PMID: 12169260]
  33. J Neurosci. 1997 Jun 1;17(11):4302-11 [PMID: 9151747]
  34. J Cogn Neurosci. 2002 Feb 15;14(2):145-59 [PMID: 11970782]
  35. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  36. Brain Lang. 2007 Dec;103(3):304-7; author reply 308-12 [PMID: 17418887]
  37. Brain. 2002 May;125(Pt 5):1054-69 [PMID: 11960895]
  38. Nat Neurosci. 2004 May;7(5):555-62 [PMID: 15077112]
  39. Brain Lang. 1990 Oct;39(3):405-27 [PMID: 2285860]
  40. Neuroimage. 1999 Sep;10(3 Pt 1):233-60 [PMID: 10458940]
  41. Brain Lang. 2007 Dec;103(3):292-303 [PMID: 17292463]
  42. Psychol Rev. 1996 Jan;103(1):56-115 [PMID: 8650300]
  43. Ment Retard Dev Disabil Res Rev. 2000;6(3):207-13 [PMID: 10982498]
  44. Neuroimage. 2011 Aug 1;57(3):1022-30 [PMID: 21600292]
  45. Neuron. 2006 Apr 20;50(2):191-204 [PMID: 16630832]
  46. Brain. 2000 Feb;123 ( Pt 2):291-307 [PMID: 10648437]
  47. Science. 2010 Dec 3;330(6009):1359-64 [PMID: 21071632]
  48. Psychol Bull. 1998 Jan;123(1):71-99 [PMID: 9461854]
  49. Hum Brain Mapp. 2009 Mar;30(3):810-20 [PMID: 18381767]
  50. Biol Psychiatry. 2005 Jun 1;57(11):1301-9 [PMID: 15950002]
  51. Brain Inj. 1992 Nov-Dec;6(6):529-42 [PMID: 1393187]

Grants

  1. R01 HD060388/NICHD NIH HHS
  2. 1R01HD060388/NICHD NIH HHS

MeSH Term

Analysis of Variance
Face
Female
Functional Laterality
Humans
Learning
Magnetic Resonance Imaging
Male
Neuropsychological Tests
Occipital Lobe
Pattern Recognition, Visual
Phonetics
Photic Stimulation
Practice, Psychological
Reading
Task Performance and Analysis
Temporal Lobe
Visual Perception
Young Adult

Word Cloud

Created with Highcharts 10.0.0FGorthographicleft-lateralizedVWFAlateralizationfunctionalstimuliwordsresponsewithinfusiformgyrusvisualalphabetFaceFontprocessingregionvicinitytrainedleftreadingtrainingNumerousneuroimagingstudiesshownprintedEnglishproducecharacteristiclocationtermedwordformareadevelopedexperimentalcomprising35face-phonemepairsdisentanglephonologicalperceptualinfluencesUsingimagingfoundrespondedstronglyversusuntrainedparticipantswhereasdifferencesobservedrightmagnitudescorrelatedbehavioralperformanceprovidingstrongevidenceneuraltissuerecruitedsupportednewlyacquiredskillresultsindicaterestrictedparticularvisual-perceptualfeaturesInsteadmayoccuranatomicalprojectionsprovideuniqueinterconnectionsystemlanguageareasinvolvedrepresentationspeechLearningreadhumanfacesproduceseffects

Similar Articles

Cited By