Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family.

Johannes A Hofberger, Eric Lyons, Patrick P Edger, J Chris Pires, M Eric Schranz
Author Information
  1. Johannes A Hofberger: Biosystematics Group, Wageningen University & Research Center, Wageningen, Gelderland, The Netherlands.

Abstract

Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success.

Keywords

References

  1. Front Plant Sci. 2012 Jul 31;3:172 [PMID: 22866056]
  2. Plant Cell. 2009 Jun;21(6):1813-29 [PMID: 19542295]
  3. Science. 2012 Aug 31;337(6098):1081-4 [PMID: 22936775]
  4. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  5. PLoS One. 2013;8(2):e55127 [PMID: 23390519]
  6. Trends Genet. 2004 Mar;20(3):116-22 [PMID: 15049302]
  7. Curr Opin Genet Dev. 2005 Aug;15(4):454-60 [PMID: 15964755]
  8. PLoS Comput Biol. 2006 Sep 1;2(9):e115 [PMID: 16948529]
  9. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  10. J Biol Chem. 2004 Dec 3;279(49):50717-25 [PMID: 15358770]
  11. Phytochemistry. 2006 Jun;67(11):1053-67 [PMID: 16624350]
  12. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14587-92 [PMID: 14506289]
  13. Plant Physiol. 2003 Sep;133(1):63-72 [PMID: 12970475]
  14. Plant Mol Biol. 2000 Jan;42(1):93-113 [PMID: 10688132]
  15. Mol Biol Evol. 2010 Jan;27(1):55-71 [PMID: 19744998]
  16. Plant J. 2008 Feb;53(4):661-73 [PMID: 18269575]
  17. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  18. Am J Bot. 1998 Jul;85(7):997 [PMID: 21684983]
  19. Plant Physiol. 2006 Feb;140(2):411-32 [PMID: 16407444]
  20. Eur J Nutr. 2008 May;47 Suppl 2:73-88 [PMID: 18458837]
  21. Plant Physiol. 2008 Dec;148(4):2096-108 [PMID: 18945935]
  22. Plant Physiol. 2005 Jan;137(1):253-62 [PMID: 15579661]
  23. Plant J. 2007 Jun;50(5):902-10 [PMID: 17461789]
  24. Annu Rev Genet. 2012;46:651-75 [PMID: 23145912]
  25. Phytochemistry. 2007 Nov-Dec;68(22-24):2831-46 [PMID: 17980895]
  26. Genome Res. 2006 Jul;16(7):805-14 [PMID: 16818725]
  27. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83 [PMID: 17420480]
  28. Phytochemistry. 2010 Dec;71(17-18):2074-86 [PMID: 20971483]
  29. Plant Cell Physiol. 2009 Jul;50(7):1181-90 [PMID: 19493961]
  30. PLoS Genet. 2007 Sep;3(9):1687-701 [PMID: 17941713]
  31. Trends Plant Sci. 2010 May;15(5):283-90 [PMID: 20303821]
  32. Nature. 2003 Mar 27;422(6930):433-8 [PMID: 12660784]
  33. Mol Phylogenet Evol. 2003 Dec;29(3):410-6 [PMID: 14615183]
  34. Genome Res. 2006 Jul;16(7):934-46 [PMID: 16760422]
  35. Phytochemistry. 2005 Jun;66(11):1321-33 [PMID: 15913672]
  36. Trends Genet. 2003 Jul;19(7):409-13 [PMID: 12850447]
  37. Nat Genet. 2011 Aug 28;43(10):1035-9 [PMID: 21873998]
  38. Plant J. 2007 Jun;50(5):886-901 [PMID: 17461791]
  39. Curr Opin Plant Biol. 2012 Apr;15(2):147-53 [PMID: 22480429]
  40. Plant Cell Physiol. 2010 Sep;51(9):1480-7 [PMID: 20663849]
  41. Plant Physiol. 2008 Nov;148(3):1721-33 [PMID: 18799661]
  42. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  43. Genetics. 2006 Jul;173(3):1629-36 [PMID: 16702431]
  44. PLoS Genet. 2010 May 13;6(5):e1000945 [PMID: 20485571]
  45. Annu Rev Plant Biol. 2009;60:433-53 [PMID: 19575588]
  46. Nat Genet. 2013 Aug;45(8):891-8 [PMID: 23817568]
  47. Science. 2009 Jan 2;323(5910):101-6 [PMID: 19095900]
  48. PLoS One. 2012;7(1):e29762 [PMID: 22253773]
  49. PLoS One. 2011;6(12):e28150 [PMID: 22164235]
  50. J Mol Evol. 2010 Jun;70(6):531-44 [PMID: 20495794]
  51. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  52. PLoS One. 2008 Mar 19;3(3):e1838 [PMID: 18350173]
  53. PLoS Genet. 2013;9(2):e1003255 [PMID: 23408902]
  54. J Exp Zool B Mol Dev Evol. 2007 Jan 15;308(1):58-73 [PMID: 16838295]
  55. Plant Cell. 2001 Mar;13(3):681-93 [PMID: 11251105]
  56. Gene. 2011 Nov 10;487(2):135-42 [PMID: 21835231]
  57. Phytochemistry. 2001 Jan;56(1):5-51 [PMID: 11198818]
  58. Plant Cell. 2009 Mar;21(3):985-99 [PMID: 19293369]
  59. Drug Metab Dispos. 2001 Aug;29(8):1110-3 [PMID: 11454729]
  60. Genome Res. 2008 Dec;18(12):1924-37 [PMID: 18836034]
  61. Drug Metab Rev. 2000 Aug-Nov;32(3-4):395-411 [PMID: 11139137]
  62. New Phytol. 2008;177(3):627-642 [PMID: 18042203]
  63. Plant Cell. 2013 Aug;25(8):2813-30 [PMID: 23983221]
  64. Plant Physiol. 2007 May;144(1):60-71 [PMID: 17369439]
  65. Science. 2009 Jan 2;323(5910):95-101 [PMID: 19095898]
  66. Genome Res. 2010 Sep;20(9):1229-37 [PMID: 20530251]
  67. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42 [PMID: 19325131]
  68. Mol Plant Microbe Interact. 1999 Feb;12(2):93-102 [PMID: 9926411]
  69. Trends Ecol Evol. 2005 Nov;20(11):591-7 [PMID: 16701441]
  70. PLoS One. 2008 Apr 30;3(4):e2068 [PMID: 18446225]
  71. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  72. Phytochemistry. 2008 Jun;69(9):1826-31 [PMID: 18490034]
  73. Plant Cell. 2011 Dec;23(12):4241-53 [PMID: 22180627]

MeSH Term

Arabidopsis
Evolution, Molecular
Genome, Plant
Genomic Structural Variation
Glucosinolates
Mustard Plant
Sequence Homology
Synteny
Tandem Repeat Sequences

Chemicals

Glucosinolates

Word Cloud

Created with Highcharts 10.0.0ArabidopsisGSWGDAethionemapathwaydiversificationfamilygenesduplicationgenetandemTDmustardlocicommonwhole-genomeeventsduplicatecopiesorganizedgeneticplantglucosinolateone45%protein-codingrespectivelyfunctionalPlantssharehistorysuccessiveretaininggenomicpatternsohnologsconservedsyntenicblocksDuplicationoftenproposedaffectoriginnoveltraitsevolutionHoweverevidencelinkingscarceshowacceleratedversatilitysecondarymetabolismexemplifiedbiosynthesiswell-studiedtraitemployingleast52biosyntheticregulatorymodelphylogenomicsapproachidentified67arabicumtribeAethionemaesistergroupmembersfamiliesevolvedorthologsorthologoussequencepairsexhibitsyntenyfractionduplicatesamongincreased95%97%inventoryCompared22%average52%56%alignohnologdatingbacklasteventAlthough15%arrays48%descenddescribesequentialcombinationdrivingextensiontherebyexpandingevolutionaryplaygroundthuspotentialnoveltysuccessWholegenomeretentionfacilitatedBrassicaceaecomparativegenomicssystemsbiology

Similar Articles

Cited By