A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis.

Joshua Bowman, Pallavi Ghosh
Author Information
  1. Joshua Bowman: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.

Abstract

Mycobacteria are intrinsically resistant to a variety of stresses including many antibiotics. Although a number of pathways have been described to account for the observed resistances, the mechanisms that control the expression of genes required in these processes remain poorly defined. Here we report the role of a predicted anti-sigma factor, MSMEG_6129 and a predicted eukaryotic like serine/threonine protein kinase, MSMEG_5437, in the intrinsic resistance of Mycobacterium smegmatis to a variety of stresses including the genotoxic agent mitomycin C, hydrogen peroxide and at least four different antibiotics - isoniazid, chloramphenicol, erythromycin and tetracycline. We show that MSMEG_5437 influences the phosphorylation state of MSMEG_6129. Further, MSMEG_6129 controls the expression of a plethora of genes including efflux pumps, ABC transporters, catalases and transcription factors, either directly or via regulators like WhiB7, which account for the observed multi-drug resistance phenotypes. MSMEG_6129 in turn phosphorylates a contiguously located putative anti-anti-sigma factor, MSMEG_6127. We therefore propose that MSMEG_5437, MSMEG_6129 and MSMEG_6127 are components of a master regulatory network, upstream of whiB7, that controls the activity of one or more of the 28 sigma factors in M. smegmatis. Together, this network controls the expression of a regulon required for resistance to several unrelated antibiotics.

References

  1. Curr Opin Microbiol. 1999 Apr;2(2):135-41 [PMID: 10322161]
  2. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12712-7 [PMID: 11606763]
  3. FEMS Microbiol Rev. 2006 Nov;30(6):926-41 [PMID: 17064287]
  4. Mol Microbiol. 2002 Sep;45(6):1527-40 [PMID: 12354223]
  5. Mol Microbiol. 2004 Jan;51(1):175-88 [PMID: 14651620]
  6. Nat Immunol. 2003 Oct;4(10):949-55 [PMID: 14515128]
  7. Nature. 2000 Aug 17;406(6797):735-8 [PMID: 10963599]
  8. Cell Microbiol. 2009 Aug;11(8):1151-9 [PMID: 19388905]
  9. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13105-10 [PMID: 18728196]
  10. Nucleic Acids Res. 2013 Dec;41(22):10062-76 [PMID: 23990327]
  11. PLoS Pathog. 2007 Apr;3(4):e49 [PMID: 17411339]
  12. J Bacteriol. 1998 Jun;180(11):2995-8 [PMID: 9603894]
  13. Annu Rev Microbiol. 2003;57:441-66 [PMID: 14527287]
  14. FEMS Immunol Med Microbiol. 2011 Oct;63(1):1-9 [PMID: 21668514]
  15. Mol Microbiol. 2010 Feb;75(3):592-606 [PMID: 20025669]
  16. Annu Rev Microbiol. 1998;52:231-86 [PMID: 9891799]
  17. Microbiol Mol Biol Rev. 2005 Jun;69(2):326-56 [PMID: 15944459]
  18. J Biol Chem. 2000 Sep 8;275(36):28326-31 [PMID: 10869356]
  19. Microbiology (Reading). 2008 Sep;154(Pt 9):2786-2795 [PMID: 18757812]
  20. Infect Immun. 2006 Apr;74(4):2457-61 [PMID: 16552079]
  21. Expert Rev Anti Infect Ther. 2012 Sep;10(9):1037-47 [PMID: 23106278]
  22. Mol Microbiol. 2003 Nov;50(3):949-59 [PMID: 14617153]
  23. J Bacteriol. 2001 Oct;183(20):6119-25 [PMID: 11567012]
  24. J Bacteriol. 1998 Nov;180(22):5836-43 [PMID: 9811639]
  25. Antimicrob Agents Chemother. 2006 Dec;50(12):4044-52 [PMID: 17043130]
  26. Nat Commun. 2012 Mar 20;3:753 [PMID: 22434196]
  27. Methods Mol Biol. 2008;435:203-15 [PMID: 18370078]
  28. Antioxid Redox Signal. 2002 Feb;4(1):141-59 [PMID: 11970850]
  29. Biochim Biophys Acta. 2009 Mar;1794(3):541-53 [PMID: 19130906]
  30. Methods Mol Biol. 2008;416:45-59 [PMID: 18392960]
  31. Mol Microbiol. 2002 Oct;46(2):453-66 [PMID: 12406221]
  32. Biochemistry. 2000 Aug 15;39(32):9975-83 [PMID: 10933818]
  33. Trends Microbiol. 2000 May;8(5):238-44 [PMID: 10785641]
  34. Antimicrob Agents Chemother. 2009 Aug;53(8):3515-9 [PMID: 19528288]
  35. Nat Med. 2000 Dec;6(12):1330-3 [PMID: 11100116]
  36. Trends Microbiol. 1998 Dec;6(12):464-5 [PMID: 10036721]
  37. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12200-5 [PMID: 16103351]
  38. Nat Methods. 2007 Feb;4(2):147-52 [PMID: 17179933]
  39. Mol Microbiol. 1998 Jun;28(6):1059-66 [PMID: 9680198]
  40. Mol Microbiol. 1999 Mar;31(5):1285-94 [PMID: 10200951]

Grants

  1. R21 AI090178/NIAID NIH HHS
  2. 1R21AI090178/NIAID NIH HHS

MeSH Term

ATP-Binding Cassette Transporters
Anti-Bacterial Agents
Bacterial Proteins
Catalase
Drug Resistance, Multiple, Bacterial
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Hydrogen Peroxide
Mitomycin
Mycobacterium smegmatis
Phenotype
Phosphorylation
Protein Serine-Threonine Kinases
Regulon
Sequence Alignment
Sigma Factor
Transcription Factors

Chemicals

ATP-Binding Cassette Transporters
Anti-Bacterial Agents
Bacterial Proteins
Sigma Factor
Transcription Factors
Mitomycin
Hydrogen Peroxide
Catalase
Protein Serine-Threonine Kinases

Word Cloud

Created with Highcharts 10.0.0MSMEG_6129resistanceincludingantibioticsexpressionMSMEG_5437controlsnetworkvarietystressesaccountobservedgenesrequiredpredictedfactorlikeintrinsicMycobacteriumsmegmatisfactorsMSMEG_6127regulatoryMycobacteriaintrinsicallyresistantmanyAlthoughnumberpathwaysdescribedresistancesmechanismscontrolprocessesremainpoorlydefinedreportroleanti-sigmaeukaryoticserine/threonineproteinkinasegenotoxicagentmitomycinChydrogenperoxideleastfourdifferent-isoniazidchloramphenicolerythromycintetracyclineshowinfluencesphosphorylationstateplethoraeffluxpumpsABCtransporterscatalasestranscriptioneitherdirectlyviaregulatorsWhiB7multi-drugphenotypesturnphosphorylatescontiguouslylocatedputativeanti-anti-sigmathereforeproposecomponentsmasterupstreamwhiB7activityone28sigmaM smegmatisTogetherregulonseveralunrelatedcomplexcontrollingmultidrug

Similar Articles

Cited By