Genomic divergence between nine- and three-spined sticklebacks.

Baocheng Guo, Frédéric J J Chain, Erich Bornberg-Bauer, Erica H Leder, Juha Merilä
Author Information
  1. Baocheng Guo: Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland. baochengguo@gmail.com.

Abstract

BACKGROUND: Comparative genomics approaches help to shed light on evolutionary processes that shape differentiation between lineages. The nine-spined stickleback (Pungitius pungitius) is a closely related species of the ecological 'supermodel' three-spined stickleback (Gasterosteus aculeatus). It is an emerging model system for evolutionary biology research but has garnered less attention and lacks extensive genomic resources. To expand on these resources and aid the study of sticklebacks in a phylogenetic framework, we characterized nine-spined stickleback transcriptomes from brain and liver using deep sequencing.
RESULTS: We obtained nearly eight thousand assembled transcripts, of which 3,091 were assigned as putative one-to-one orthologs to genes found in the three-spined stickleback. These sequences were used for evaluating overall differentiation and substitution rates between nine- and three-spined sticklebacks, and to identify genes that are putatively evolving under positive selection. The synonymous substitution rate was estimated to be 7.1 × 10(-9) per site per year between the two species, and a total of 165 genes showed patterns of adaptive evolution in one or both species. A few nine-spined stickleback contigs lacked an obvious ortholog in three-spined sticklebacks but were found to match genes in other fish species, suggesting several gene losses within 13 million years since the divergence of the two stickleback species. We identified 47 SNPs in 25 different genes that differentiate pond and marine ecotypes. We also identified 468 microsatellites that could be further developed as genetic markers in nine-spined sticklebacks.
CONCLUSION: With deep sequencing of nine-spined stickleback cDNA libraries, our study provides a significant increase in the number of gene sequences and microsatellite markers for this species, and identifies a number of genes showing patterns of adaptive evolution between nine- and three-spined sticklebacks. We also report several candidate genes that might be involved in differential adaptation between marine and freshwater nine-spined sticklebacks. This study provides a valuable resource for future studies aiming to identify candidate genes underlying ecological adaptation in this and other stickleback species.

References

  1. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  2. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 [PMID: 16176987]
  3. Nature. 2013 Mar 21;495(7441):360-4 [PMID: 23354050]
  4. PLoS Genet. 2010 Feb 26;6(2):e1000862 [PMID: 20195501]
  5. Mol Biol Evol. 1996 Jul;13(6):735-48 [PMID: 8754210]
  6. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  7. Aquat Toxicol. 2010 Jun 10;98(2):188-95 [PMID: 20207028]
  8. Mol Ecol. 2013 Feb;22(3):635-49 [PMID: 22747593]
  9. Mol Ecol. 2010 Mar;19(6):1147-61 [PMID: 20163545]
  10. Ann N Y Acad Sci. 2013 Jun;1289:18-35 [PMID: 23550583]
  11. Nature. 1991 Jun 20;351(6328):652-4 [PMID: 1904993]
  12. BMC Evol Biol. 2012 Jul 12;12:115 [PMID: 22788717]
  13. Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5791-6 [PMID: 15824312]
  14. BMC Genomics. 2010 Jun 23;11:396 [PMID: 20569428]
  15. Mol Biol Evol. 2000 Jan;17(1):32-43 [PMID: 10666704]
  16. Nature. 2004 Apr 15;428(6984):717-23 [PMID: 15085123]
  17. PLoS Biol. 2004 May;2(5):E109 [PMID: 15069472]
  18. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):803-8 [PMID: 11792858]
  19. Trends Genet. 2002 Sep;18(9):486 [PMID: 12175810]
  20. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  21. Behav Genet. 2014 Jan;44(1):77-88 [PMID: 24190427]
  22. Science. 2010 Jan 15;327(5963):302-5 [PMID: 20007865]
  23. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  24. G3 (Bethesda). 2013 Oct 03;3(10):1833-42 [PMID: 23979937]
  25. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13753-8 [PMID: 16945911]
  26. BMC Genomics. 2010 May 27;11:334 [PMID: 20507571]
  27. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9272-7 [PMID: 18583475]
  28. Mol Ecol. 2011 Feb;20(3):560-72 [PMID: 21199025]
  29. Mol Biol Evol. 2002 Jun;19(6):908-17 [PMID: 12032247]
  30. Nucleic Acids Res. 2008 Jun;36(10):3420-35 [PMID: 18445632]
  31. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  32. Science. 2005 Mar 25;307(5717):1890-1 [PMID: 15790836]
  33. Mol Ecol. 2010 Sep;19(18):4061-76 [PMID: 20854276]
  34. Genetics. 2013 Feb;193(2):501-13 [PMID: 23172857]
  35. Proc Biol Sci. 2009 Jun 7;276(1664):2085-92 [PMID: 19324759]
  36. J Evol Biol. 2011 Jul;24(7):1546-58 [PMID: 21545426]
  37. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  38. Gene. 2009 Jun 15;439(1-2):102-12 [PMID: 19268695]
  39. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  40. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  41. Mol Biol Evol. 2012 Oct;29(10):3005-22 [PMID: 22490820]
  42. Mol Ecol. 2013 Feb;22(3):565-82 [PMID: 22943747]
  43. Mol Biol Evol. 2010 Dec;27(12):2775-89 [PMID: 20591843]
  44. Curr Biol. 2009 Jul 14;19(13):1140-5 [PMID: 19500990]
  45. PLoS One. 2011;6(12):e28859 [PMID: 22194929]
  46. Nat Rev Genet. 2006 Nov;7(11):851-61 [PMID: 17033626]
  47. Mol Biol Evol. 2011 Jan;28(1):63-70 [PMID: 20837603]
  48. Nature. 2005 Sep 15;437(7057):376-80 [PMID: 16056220]
  49. Genetics. 2007 Nov;177(3):1941-9 [PMID: 17947411]
  50. BMC Genomics. 2009 May 12;10:219 [PMID: 19435504]
  51. Genome Biol. 2006;7(5):R43 [PMID: 16723033]
  52. BMC Evol Biol. 2011 Mar 24;11:75 [PMID: 21435215]
  53. Bioinformatics. 2003 Nov 22;19(17):2325-7 [PMID: 14630667]
  54. J Evol Biol. 2009 Mar;22(3):544-52 [PMID: 19210595]
  55. Genome Inform. 2005;16(1):106-15 [PMID: 16362912]
  56. PLoS One. 2011 May 11;6(5):e19476 [PMID: 21589917]
  57. Nature. 2001 Dec 20-27;414(6866):901-5 [PMID: 11780061]
  58. J Exp Zool B Mol Dev Evol. 2010 Mar 15;314(2):135-47 [PMID: 19670462]
  59. Science. 2005 Mar 25;307(5717):1928-33 [PMID: 15790847]
  60. Evolution. 2009 Dec;63(12):3190-200 [PMID: 19624722]
  61. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  62. BMC Genomics. 2010 Mar 16;11:180 [PMID: 20233449]
  63. Mol Biol Evol. 2005 Dec;22(12):2472-9 [PMID: 16107592]
  64. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  65. Curr Opin Genet Dev. 2008 Dec;18(6):544-50 [PMID: 19095434]
  66. Comp Funct Genomics. 2011;2011:680673 [PMID: 21860604]
  67. Nat Genet. 2013 Jan;45(1):67-71 [PMID: 23242367]
  68. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [PMID: 12883005]
  69. Theor Appl Genet. 2003 Feb;106(3):411-22 [PMID: 12589540]
  70. Trends Ecol Evol. 2000 Dec 1;15(12):496-503 [PMID: 11114436]
  71. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D447-53 [PMID: 15608235]
  72. Nature. 2012 Apr 04;484(7392):55-61 [PMID: 22481358]
  73. Trends Ecol Evol. 2010 Dec;25(12):705-12 [PMID: 20952088]
  74. Curr Biol. 2012 Jan 10;22(1):83-90 [PMID: 22197244]
  75. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6050-5 [PMID: 15069186]
  76. Biol Lett. 2012 Apr 23;8(2):249-52 [PMID: 21957092]
  77. Mol Ecol. 2010 Mar;19 Suppl 1:197-211 [PMID: 20331780]
  78. Curr Biol. 2004 Aug 24;14(16):1416-24 [PMID: 15324658]
  79. PLoS Biol. 2003 Nov;1(2):E58 [PMID: 14624258]
  80. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  81. Mol Ecol. 2008 Apr;17(7):1636-47 [PMID: 18266620]
  82. J Evol Biol. 2009 Aug;22(8):1721-6 [PMID: 19549140]
  83. PLoS Genet. 2009 Jul;5(7):e1000550 [PMID: 19578407]
  84. Cell. 2007 Dec 14;131(6):1179-89 [PMID: 18083106]
  85. Mol Ecol. 2013 Dec;22(23):5861-76 [PMID: 24102814]

MeSH Term

Adaptation, Physiological
Animals
Evolution, Molecular
Genetic Variation
Genome
Microsatellite Repeats
Phylogeny
Smegmamorpha
Species Specificity