Distribution of alginate genes in bacterial isolates from corroded metal surfaces.

W H Wallace, J F Rice, D C White, G S Sayler
Author Information
  1. W H Wallace: Department of Microbiology and the Graduate Program in Ecology, Center for Environmental Biotechnology, The University of Tennessee, 10515 Research Drive, 37932, Knoxville, TN, USA.

Abstract

The distribution of alginate genes encoding biosynthesis of alginate was examined for bacterial isolates associated with corrosive biofilms recovered from source water, cooling lines, and reactor surfaces of a nuclear power plant. A total of 120 diverse Gram-positive and -negative isolates were obtained. Using DNA:DNA hybridization, 11 isolates were shown to contain sequences homologous to structural (algD, algG, alg-76) and/or regulatory (albB) alginate biosynthetic genes derived from an alginate-producing cystic fibrosis isolate of Pseudomonas aeruginosa (FRD1). Identification of isolates was accomplished by fatty acids methyl esters (FAME) analysis and the Biolog identification system. Nine of the twelve isolates were identified as various Pseudomonas spp., and two additional Gram-negative isolates were tentatively identified as Aeromonas veronii and Stenotrophomonas maltophilia. The remaining isolate was identified as a Gram-positive Bacillus pumilus. The results of the investigation extend current knowledge on the distribution of alginate biosynthetic genes in environmental isolates and permits the development of a more environmentally realistic model system to investigate the role of exopolymer production in biofilm formation and biocorrosion processes.

References

  1. Infect Immun. 1985 Jan;47(1):1-4 [PMID: 3155514]
  2. J Bacteriol. 1984 Jun;158(3):1115-21 [PMID: 6427188]
  3. Appl Environ Microbiol. 1985 Apr;49(4):846-51 [PMID: 4004217]
  4. Annu Rev Microbiol. 1987;41:435-64 [PMID: 3318676]
  5. Annu Rev Microbiol. 1990;44:625-48 [PMID: 2252397]
  6. J Bacteriol. 1991 Feb;173(4):1406-13 [PMID: 1899859]
  7. Annu Rev Microbiol. 1992;46:307-46 [PMID: 1444258]
  8. Mol Microbiol. 1990 May;4(5):737-45 [PMID: 2167423]
  9. J Bacteriol. 1990 Jun;172(6):2894-900 [PMID: 2160929]
  10. J Bacteriol. 1987 Jan;169(1):351-8 [PMID: 3025179]
  11. Infect Immun. 1981 Jul;33(1):142-8 [PMID: 6790439]
  12. J Bacteriol. 1987 Apr;169(4):1593-602 [PMID: 3031015]
  13. Microb Ecol. 1994 May;27(3):225-39 [PMID: 24190337]
  14. J Bacteriol. 1990 Nov;172(11):6576-80 [PMID: 2121718]
  15. Appl Environ Microbiol. 1990 Feb;56(2):436-43 [PMID: 1689562]
  16. J Bacteriol. 1989 Mar;171(3):1278-83 [PMID: 2493441]
  17. J Bacteriol. 1989 May;171(5):2312-7 [PMID: 2496102]

Word Cloud

Created with Highcharts 10.0.0isolatesalginategenesidentifieddistributionbacterialsurfacesGram-positivebiosyntheticisolatePseudomonassystemencodingbiosynthesisexaminedassociatedcorrosivebiofilmsrecoveredsourcewatercoolinglinesreactornuclearpowerplanttotal120diverse-negativeobtainedUsingDNA:DNAhybridization11showncontainsequenceshomologousstructuralalgDalgGalg-76and/orregulatoryalbBderivedalginate-producingcysticfibrosisaeruginosaFRD1IdentificationaccomplishedfattyacidsmethylestersFAMEanalysisBiologidentificationNinetwelvevariousspptwoadditionalGram-negativetentativelyAeromonasveroniiStenotrophomonasmaltophiliaremainingBacilluspumilusresultsinvestigationextendcurrentknowledgeenvironmentalpermitsdevelopmentenvironmentallyrealisticmodelinvestigateroleexopolymerproductionbiofilmformationbiocorrosionprocessesDistributioncorrodedmetal

Similar Articles

Cited By