Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.

Robert Pascal, Addy Pross, John D Sutherland
Author Information
  1. Robert Pascal: Institut des Biomolécules Max Mousseron UMR5247, CNRS-Universités Montpellier 1 and Montpellier 2, CC17006, Place E. Bataillon, 34095 Montpellier, France.

Abstract

A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.

Keywords

References

  1. Nature. 2012 Nov 1;491(7422):72-7 [PMID: 23075853]
  2. Nature. 1961 Jul 8;191:144-8 [PMID: 13771349]
  3. BMC Biol. 2010 Mar 10;8:21 [PMID: 20219099]
  4. Chem Soc Rev. 2008 Jan;37(1):101-8 [PMID: 18197336]
  5. Chemistry. 2009 Aug 24;15(34):8374-81 [PMID: 19609991]
  6. Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2949-58 [PMID: 21930587]
  7. Naturwissenschaften. 1977 Nov;64(11):541-65 [PMID: 593400]
  8. Orig Life Evol Biosph. 2013 Apr;43(2):151-60 [PMID: 23494128]
  9. J Phys Chem A. 2011 Jul 21;115(28):8073-85 [PMID: 21650179]
  10. Orig Life Evol Biosph. 2010 Apr;40(2):161-7 [PMID: 20198435]
  11. Nature. 1996 Aug 8;382(6591):525-8 [PMID: 8700225]
  12. Hist Philos Life Sci. 2010;32(2-3):269-88 [PMID: 21162371]
  13. Orig Life Evol Biosph. 2010 Apr;40(2):137-43 [PMID: 20204517]
  14. Angew Chem Int Ed Engl. 2005 Oct 21;44(41):6750-5 [PMID: 16187397]
  15. Science. 2009 Feb 27;323(5918):1229-32 [PMID: 19131595]
  16. Nature. 1994 May 19;369(6477):221-4 [PMID: 8183342]
  17. Microbiol Rev. 1988 Dec;52(4):452-84 [PMID: 3070320]
  18. J Theor Biol. 1989 May 9;138(1):55-8 [PMID: 2483243]
  19. Astrobiology. 2010 Dec;10(10):1003-9 [PMID: 21162680]
  20. J Mol Evol. 2013 Apr;76(4):185-91 [PMID: 23512244]
  21. J Mol Evol. 1997 Jan;44(1):1-8 [PMID: 9010131]
  22. Chemistry. 2012 Feb 13;18(7):2063-80 [PMID: 22241585]
  23. Open Biol. 2013 Mar 06;3(3):120190 [PMID: 23466673]
  24. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7704-8 [PMID: 10859347]
  25. Orig Life Evol Biosph. 2004 Jun;34(3):323-46 [PMID: 15068038]
  26. Chem Biodivers. 2007 Apr;4(4):554-73 [PMID: 17443871]
  27. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):59-83; discussion 83-5 [PMID: 12594918]
  28. Int Microbiol. 1999 Mar;2(1):3-10 [PMID: 10943384]
  29. Orig Life Evol Biosph. 2012 Oct;42(5):459-68 [PMID: 23100130]
  30. J Mol Evol. 2009 Nov;69(5):541-54 [PMID: 19777150]
  31. Angew Chem Int Ed Engl. 2011 Dec 23;50(52):12412-72 [PMID: 22162284]
  32. Orig Life Evol Biosph. 2007 Oct;37(4-5):309-14 [PMID: 17602311]
  33. Angew Chem Int Ed Engl. 2013 May 27;52(22):5845-7 [PMID: 23610046]
  34. Chem Soc Rev. 2012 Aug 21;41(16):5394-403 [PMID: 22508108]
  35. Nature. 1953 Apr 25;171(4356):737-8 [PMID: 13054692]
  36. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8742-7 [PMID: 12077305]
  37. Nat Chem. 2012 Nov;4(11):895-9 [PMID: 23089863]
  38. Proc Natl Acad Sci U S A. 1922 Jun;8(6):147-51 [PMID: 16576642]
  39. Naturwissenschaften. 1971 Oct;58(10):465-523 [PMID: 4942363]

Grants

  1. MC_UP_A024_1009/Medical Research Council

MeSH Term

Biological Evolution
Evolution, Molecular
Kinetics
Models, Molecular
Origin of Life
Thermodynamics

Word Cloud

Created with Highcharts 10.0.0lifeoriginstabilitykineticlivingprocessbasedkindchemistryentitiesevolutionaryirreversibilitysuddentransitionsysteminanimatestatestate-definedbasispresentdayorganisms-wouldconstitutehighlyunlikelyeventhardlypredictablephysicallawsuncontroversialideaself-consistentrepresentationbuiltpossibilityseriesintermediatestagesapproachrequiresparticularstages-dynamicDKS-whichusuallyobservedregularreflectedpersistencecapableself-reproductionnecessaryconnectionbehaviourfar-from-equilibriumthermodynamicconditionsemphasizedleadsviewmultiplyingmustassociateddissipationfreeenergyentityinvolvedpayenergeticcostcontingentemergencenewfunctionsmadefeasibleconsequencesviewsstudiesprocessescanemergeinferredTowardstheorykineticsthermodynamicsabiogenesisdynamicmetabolismsystems

Similar Articles

Cited By