The effects of vector movement and distribution in a mathematical model of dengue transmission.

Dennis L Chao, Ira M Longini, M Elizabeth Halloran
Author Information
  1. Dennis L Chao: Center for Statistics and Quantitative Infectious Diseases, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.

Abstract

BACKGROUND: Mathematical models have been used to study the dynamics of infectious disease outbreaks and predict the effectiveness of potential mass vaccination campaigns. However, models depend on simplifying assumptions to be tractable, and the consequences of making such assumptions need to be studied. Two assumptions usually incorporated by mathematical models of vector-borne disease transmission is homogeneous mixing among the hosts and vectors and homogeneous distribution of the vectors.
METHODOLOGY/PRINCIPAL FINDINGS: We explored the effects of mosquito movement and distribution in an individual-based model of dengue transmission in which humans and mosquitoes are explicitly represented in a spatial environment. We found that the limited flight range of the vector in the model greatly reduced its ability to transmit dengue among humans. A model that does not assume a limited flight range could yield similar attack rates when transmissibility of dengue was reduced by 39%. A model in which mosquitoes are distributed uniformly across locations behaves similarly to one in which the number of mosquitoes per location is drawn from an exponential distribution with a slightly higher mean number of mosquitoes per location. When the models with different assumptions were calibrated to have similar human infection attack rates, mass vaccination had nearly identical effects.
CONCLUSIONS/SIGNIFICANCE: Small changes in assumptions in a mathematical model of dengue transmission can greatly change its behavior, but estimates of the effectiveness of mass dengue vaccination are robust to some simplifying assumptions typically made in mathematical models of vector-borne disease.

References

  1. Trop Med Int Health. 2012 Sep;17(9):1076-85 [PMID: 22808917]
  2. J Infect Dis. 2012 Aug 1;206(3):389-98 [PMID: 22615312]
  3. PLoS Negl Trop Dis. 2010 Sep 28;4(9):e830 [PMID: 20927187]
  4. Am J Epidemiol. 1992 Aug 1;136(3):328-43 [PMID: 1415152]
  5. PLoS Negl Trop Dis. 2012;6(8):e1799 [PMID: 22953017]
  6. J Med Entomol. 2001 Jan;38(1):93-8 [PMID: 11268697]
  7. PLoS Negl Trop Dis. 2012 Jan;6(1):e1482 [PMID: 22292098]
  8. Vaccine. 2011 Aug 11;29(35):5860-8 [PMID: 21699949]
  9. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):757-68 [PMID: 10365401]
  10. Am J Trop Med Hyg. 1998 Mar;58(3):287-98 [PMID: 9546405]
  11. Med Vet Entomol. 2004 Dec;18(4):351-60 [PMID: 15642001]
  12. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9535-8 [PMID: 22645364]
  13. PLoS Negl Trop Dis. 2013;7(3):e2127 [PMID: 23516658]
  14. PLoS One. 2012;7(12):e51244 [PMID: 23251466]
  15. Nature. 2013 Apr 25;496(7446):504-7 [PMID: 23563266]
  16. PLoS Negl Trop Dis. 2012;6(12):e1957 [PMID: 23236536]
  17. PLoS Negl Trop Dis. 2012;6(7):e1730 [PMID: 22816001]
  18. PLoS Med. 2008 Nov 4;5(11):e205 [PMID: 18986209]
  19. Viruses. 2011 Oct;3(10):1800-14 [PMID: 22069516]
  20. Trop Med Health. 2011 Dec;39(4 Suppl):63-71 [PMID: 22500138]
  21. PLoS Negl Trop Dis. 2012;6(10):e1876 [PMID: 23145197]
  22. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):994-9 [PMID: 23277539]
  23. Am J Trop Med Hyg. 2003 Nov;69(5):494-505 [PMID: 14695086]
  24. J R Soc Interface. 2013 Feb 13;10(81):20120921 [PMID: 23407571]
  25. PLoS One. 2012;7(11):e49085 [PMID: 23139836]
  26. Lancet. 2012 Nov 3;380(9853):1559-67 [PMID: 22975340]
  27. PLoS Negl Trop Dis. 2012;6(3):e1450 [PMID: 22479655]
  28. Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14234-9 [PMID: 16966609]
  29. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11802-7 [PMID: 16868086]
  30. Am J Epidemiol. 1973 Apr;97(4):264-75 [PMID: 4697647]
  31. Am J Trop Med Hyg. 2005 Feb;72(2):209-20 [PMID: 15741559]
  32. PLoS Negl Trop Dis. 2009 Sep 01;3(9):e508 [PMID: 19721700]

Grants

  1. U01 GM070749/NIGMS NIH HHS
  2. U01-GM070749/NIGMS NIH HHS

MeSH Term

Animals
Culicidae
Dengue
Dengue Virus
Humans
Incidence
Insect Vectors
Mass Vaccination
Models, Theoretical
Population Density
Population Dynamics
Thailand

Word Cloud

Created with Highcharts 10.0.0assumptionsmodeldenguemodelsmathematicaltransmissiondistributionmosquitoesdiseasemassvaccinationeffectseffectivenesssimplifyingvector-bornehomogeneousamongvectorsmovementhumanslimitedflightrangevectorgreatlyreducedsimilarattackratesnumberperlocationBACKGROUND:MathematicalusedstudydynamicsinfectiousoutbreakspredictpotentialcampaignsHoweverdependtractableconsequencesmakingneedstudiedTwousuallyincorporatedmixinghostsMETHODOLOGY/PRINCIPALFINDINGS:exploredmosquitoindividual-basedexplicitlyrepresentedspatialenvironmentfoundabilitytransmitassumeyieldtransmissibility39%distributeduniformlyacrosslocationsbehavessimilarlyonedrawnexponentialslightlyhighermeandifferentcalibratedhumaninfectionnearlyidenticalCONCLUSIONS/SIGNIFICANCE:Smallchangescanchangebehaviorestimatesrobusttypicallymade

Similar Articles

Cited By