Global gene expression and focused knockout analysis reveals genes associated with fungal fruiting body development in Neurospora crassa.

Zheng Wang, Francesc Lopez-Giraldez, Nina Lehr, Marta Farré, Ralph Common, Frances Trail, Jeffrey P Townsend
Author Information
  1. Zheng Wang: Department of Biostatistics, Yale University, New Haven, Connecticut, USA.

Abstract

Fungi can serve as highly tractable models for understanding genetic basis of sexual development in multicellular organisms. Applying a reverse-genetic approach to advance such a model, we used random and multitargeted primers to assay gene expression across perithecial development in Neurospora crassa. We found that functionally unclassified proteins accounted for most upregulated genes, whereas downregulated genes were enriched for diverse functions. Moreover, genes associated with developmental traits exhibited stage-specific peaks of expression. Expression increased significantly across sexual development for mating type gene mat a-1 and for mat A-1 specific pheromone precursor ccg-4. In addition, expression of a gene encoding a protein similar to zinc finger, stc1, was highly upregulated early in perithecial development, and a strain with a knockout of this gene exhibited arrest at the same developmental stage. A similar expression pattern was observed for genes in RNA silencing and signaling pathways, and strains with knockouts of these genes were also arrested at stages of perithecial development that paralleled their peak in expression. The observed stage specificity allowed us to correlate expression upregulation and developmental progression and to identify regulators of sexual development. Bayesian networks inferred from our expression data revealed previously known and new putative interactions between RNA silencing genes and pathways. Overall, our analysis provides a fine-scale transcriptomic landscape and novel inferences regarding the control of the multistage development process of sexual crossing and fruiting body development in N. crassa.

References

  1. PLoS One. 2012;7(8):e42565 [PMID: 22900028]
  2. G3 (Bethesda). 2011 Oct;1(5):369-76 [PMID: 22384347]
  3. Heredity (Edinb). 2010 Jul;105(1):38-44 [PMID: 20407471]
  4. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  5. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  6. Genetics. 1988 Mar;118(3):417-23 [PMID: 17246415]
  7. Annu Rev Microbiol. 2012;66:305-23 [PMID: 22746336]
  8. PLoS Genet. 2010 Apr 08;6(4):e1000891 [PMID: 20386741]
  9. Genetics. 2013 May;194(1):91-100 [PMID: 23502675]
  10. J Biosci. 2010 Mar;35(1):119-26 [PMID: 20413916]
  11. Nat Struct Mol Biol. 2012 Apr 15;19(5):471-7, S1 [PMID: 22504884]
  12. Nature. 2010 Dec 9;468(7325):815-8 [PMID: 21150997]
  13. Proc Natl Acad Sci U S A. 1941 Nov 15;27(11):499-506 [PMID: 16588492]
  14. PLoS Genet. 2013;9(7):e1003642 [PMID: 23935511]
  15. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2243-8 [PMID: 16461906]
  16. Mycologia. 2006 Nov-Dec;98(6):838-49 [PMID: 17486961]
  17. Eukaryot Cell. 2006 Sep;5(9):1503-16 [PMID: 16963633]
  18. J Bacteriol. 1975 Jun;122(3):1239-46 [PMID: 125266]
  19. Mol Gen Genet. 1974;131(1):79-83 [PMID: 4277338]
  20. Mol Genet Genomics. 2005 Apr;273(2):137-49 [PMID: 15778868]
  21. Genetics. 2011 Sep;189(1):165-76 [PMID: 21750256]
  22. Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 [PMID: 15486203]
  23. Curr Opin Microbiol. 2006 Dec;9(6):553-8 [PMID: 17035076]
  24. Cell. 2001 Dec 28;107(7):905-16 [PMID: 11779466]
  25. Science. 2003 Apr 25;300(5619):594-5 [PMID: 12714732]
  26. Eukaryot Cell. 2010 Jun;9(6):894-905 [PMID: 20435701]
  27. Mol Cell Biol. 2008 Oct;28(19):6044-55 [PMID: 18678653]
  28. Eukaryot Cell. 2012 Oct;11(10):1239-48 [PMID: 22903975]
  29. Curr Biol. 2009 Sep 29;19(18):R840-5 [PMID: 19788875]
  30. BMC Biol. 2012 Nov 15;10:90 [PMID: 23153189]
  31. Fungal Genet Biol. 2011 Apr;48(4):388-99 [PMID: 21134480]
  32. Genetics. 2012 Apr;190(4):1389-404 [PMID: 22298702]
  33. Genes Dev. 2010 Nov 15;24(22):2566-82 [PMID: 21078820]
  34. Mol Microbiol. 2003 Oct;50(1):145-52 [PMID: 14507370]
  35. Eukaryot Cell. 2006 Mar;5(3):544-54 [PMID: 16524909]
  36. Fungal Genet Biol. 2012 Aug;49(8):663-73 [PMID: 22705880]
  37. PLoS Genet. 2012;8(5):e1002712 [PMID: 22589747]
  38. PLoS Genet. 2010 Nov 04;6(11):e1001196 [PMID: 21079689]
  39. Bioinformatics. 2010 Aug 1;26(15):1918-9 [PMID: 20538728]
  40. PLoS One. 2011;6(6):e21476 [PMID: 21738678]
  41. Bioinformatics. 2013 Nov 1;29(21):2801-3 [PMID: 23969134]
  42. Genetics. 2010 Sep;186(1):119-26 [PMID: 20551436]
  43. PLoS One. 2009 Apr 21;4(4):e5286 [PMID: 19461939]
  44. Fungal Genet Biol. 2007 Nov;44(11):1146-56 [PMID: 17555994]
  45. BMC Evol Biol. 2012 Nov 27;12:229 [PMID: 23186325]
  46. Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 [PMID: 15007097]
  47. Fungal Genet Biol. 1997 Jun;21(3):348-63 [PMID: 9290248]
  48. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1476-81 [PMID: 23307807]
  49. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 [PMID: 16801547]
  50. Fungal Genet Biol. 2012 May;49(5):405-13 [PMID: 22469835]
  51. Nat Biotechnol. 2006 Jan;24(1):51-3 [PMID: 16404397]
  52. BMC Genomics. 2010 Aug 17;11:477 [PMID: 20716356]
  53. Science. 2004 Jun 25;304(5679):1939 [PMID: 15218142]
  54. Fungal Genet Biol. 2010 Mar;47(3):199-204 [PMID: 20025988]
  55. Mol Microbiol. 2007 May;64(4):923-37 [PMID: 17501918]
  56. Eukaryot Cell. 2005 Feb;4(2):365-78 [PMID: 15701799]
  57. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  58. BMC Syst Biol. 2009 Sep 16;3:93 [PMID: 19758441]
  59. Development. 2012 Jun;139(12):2161-9 [PMID: 22573623]
  60. BMC Genomics. 2009 Jul 08;10:306 [PMID: 19586549]
  61. Eukaryot Cell. 2008 Feb;7(2):415-24 [PMID: 18083828]
  62. PLoS Comput Biol. 2007 Aug;3(8):e129 [PMID: 17784779]
  63. Mol Cell Biol. 2000 Oct;20(20):7693-705 [PMID: 11003665]
  64. Cell. 2010 Mar 5;140(5):666-77 [PMID: 20211136]
  65. Am J Bot. 2011 Mar;98(3):426-38 [PMID: 21613136]
  66. Mol Microbiol. 2004 Jun;52(6):1781-98 [PMID: 15186425]
  67. J Biosci. 2009 Mar;34(1):139-59 [PMID: 19430125]
  68. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  69. Adv Genet. 2007;57:49-96 [PMID: 17352902]
  70. Fungal Genet Biol. 2007 Jul;44(7):602-14 [PMID: 17092746]
  71. Nature. 2012 Oct 4;490(7418):98-101 [PMID: 22951968]
  72. Fungal Genet Biol. 2012 Jul;49(7):533-43 [PMID: 22626843]
  73. Nature. 2003 Apr 24;422(6934):859-68 [PMID: 12712197]
  74. Mol Biol Evol. 2008 Jan;25(1):168-78 [PMID: 18024989]
  75. Microbiol Mol Biol Rev. 2000 Sep;64(3):489-502 [PMID: 10974123]
  76. PLoS One. 2010 Dec 08;5(12):e15199 [PMID: 21170349]
  77. Mol Genet Genomics. 2006 Jul;276(1):87-100 [PMID: 16741730]

Grants

  1. GM068067/NIGMS NIH HHS

MeSH Term

DNA-Binding Proteins
Fungal Proteins
Gene Deletion
Gene Expression Regulation, Developmental
Gene Expression Regulation, Fungal
Genes, Mating Type, Fungal
Genome, Fungal
Neurospora crassa
Spores, Fungal
Up-Regulation

Chemicals

DNA-Binding Proteins
Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0developmentexpressiongenesgenesexualperithecialcrassadevelopmentalhighlyacrossNeurosporaupregulatedassociatedexhibitedmatsimilarknockoutstageobservedRNAsilencingpathwaysanalysisfruitingbodyFungicanservetractablemodelsunderstandinggeneticbasismulticellularorganismsApplyingreverse-geneticapproachadvancemodelusedrandommultitargetedprimersassayfoundfunctionallyunclassifiedproteinsaccountedwhereasdownregulatedenricheddiversefunctionsMoreovertraitsstage-specificpeaksExpressionincreasedsignificantlymatingtypea-1A-1specificpheromoneprecursorccg-4additionencodingproteinzincfingerstc1earlystrainarrestpatternsignalingstrainsknockoutsalsoarrestedstagesparalleledpeakspecificityalloweduscorrelateupregulationprogressionidentifyregulatorsBayesiannetworksinferreddatarevealedpreviouslyknownnewputativeinteractionsOverallprovidesfine-scaletranscriptomiclandscapenovelinferencesregardingcontrolmultistageprocesscrossingNGlobalfocusedrevealsfungal

Similar Articles

Cited By