Complex life cycles in a pond food web: effects of life stage structure and parasites on network properties, trophic positions and the fit of a probabilistic niche model.

Daniel L Preston, Abigail Z Jacobs, Sarah A Orlofske, Pieter T J Johnson
Author Information
  1. Daniel L Preston: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA, daniel.preston@colorado.edu.

Abstract

Most food webs use taxonomic or trophic species as building blocks, thereby collapsing variability in feeding linkages that occurs during the growth and development of individuals. This issue is particularly relevant to integrating parasites into food webs because parasites often undergo extreme ontogenetic niche shifts. Here, we used three versions of a freshwater pond food web with varying levels of node resolution (from taxonomic species to life stages) to examine how complex life cycles and parasites alter web properties, the perceived trophic position of organisms, and the fit of a probabilistic niche model. Consistent with prior studies, parasites increased most measures of web complexity in the taxonomic species web; however, when nodes were disaggregated into life stages, the effects of parasites on several network properties (e.g., connectance and nestedness) were reversed, due in part to the lower trophic generality of parasite life stages relative to free-living life stages. Disaggregation also reduced the trophic level of organisms with either complex or direct life cycles and was particularly useful when including predation on parasites, which can inflate trophic positions when life stages are collapsed. Contrary to predictions, disaggregation decreased network intervality and did not enhance the fit of a probabilistic niche model to the food webs with parasites. Although the most useful level of biological organization in food webs will vary with the questions of interest, our results suggest that disaggregating species-level nodes may refine our perception of how parasites and other complex life cycle organisms influence ecological networks.

References

  1. Ecology. 2011 Sep;92(9):1849-57 [PMID: 21939081]
  2. Trends Ecol Evol. 2010 Jun;25(6):362-71 [PMID: 20185202]
  3. Nature. 2000 Mar 9;404(6774):180-3 [PMID: 10724169]
  4. Environ Monit Assess. 2012 Jun;184(6):3653-74 [PMID: 21823050]
  5. Ecology. 2007 Mar;88(3):612-7 [PMID: 17503589]
  6. J Theor Biol. 2011 Feb 21;271(1):106-13 [PMID: 21144853]
  7. PLoS One. 2010 Aug 09;5(8):e12092 [PMID: 20711506]
  8. Am Nat. 2004 Mar;163(3):458-68 [PMID: 15026980]
  9. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9383-7 [PMID: 12881488]
  10. Ecol Lett. 2011 Nov;14(11):1170-81 [PMID: 21951949]
  11. J Anim Ecol. 2009 Jan;78(1):253-69 [PMID: 19120606]
  12. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11211-6 [PMID: 16844774]
  13. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12917-22 [PMID: 12235364]
  14. Oecologia. 2008 Jun;156(3):613-24 [PMID: 18305960]
  15. Ecology. 2008 Jun;89(6):1650-60 [PMID: 18589529]
  16. J Anim Ecol. 2012 Jul;81(4):905-13 [PMID: 22339475]
  17. Science. 1993 Apr 9;260(5105):242-3 [PMID: 17807184]
  18. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19015-20 [PMID: 17146055]
  19. Ecol Lett. 2011 Jan;14(1):75-9 [PMID: 21114747]
  20. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4105-9 [PMID: 6588381]
  21. Int J Parasitol. 2011 May;41(6):627-34 [PMID: 21296081]
  22. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 19;367(1604):2814-27 [PMID: 22966137]
  23. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1781-6 [PMID: 12547915]
  24. J Anim Ecol. 2013 May;82(3):509-17 [PMID: 23488451]
  25. Science. 2010 Aug 13;329(5993):853-6 [PMID: 20705861]
  26. Ecol Lett. 2008 Jun;11(6):533-46 [PMID: 18462196]
  27. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27;364(1524):1659-63 [PMID: 19451117]
  28. Science. 2007 Jul 6;317(5834):58-62 [PMID: 17615333]
  29. J Anim Ecol. 2008 Jan;77(1):191-200 [PMID: 17986208]
  30. Ecol Lett. 2008 Dec;11(12):1351-63 [PMID: 19062363]
  31. Trends Ecol Evol. 2012 Jan;27(1):40-6 [PMID: 21944861]
  32. J Anim Ecol. 2009 May;78(3):563-72 [PMID: 19175443]
  33. Ecology. 2012 Jun;93(6):1247-53 [PMID: 22834364]
  34. PLoS Biol. 2013;11(6):e1001579 [PMID: 23776404]

MeSH Term

Animals
Ecology
Food Chain
Fresh Water
Host-Parasite Interactions
Life Cycle Stages
Models, Statistical
Parasites
Ponds
Predatory Behavior

Word Cloud

Created with Highcharts 10.0.0lifeparasitesfoodtrophicstageswebsnichewebtaxonomicspeciescomplexcyclespropertiesorganismsfitprobabilisticmodelnetworkparticularlypondnodeseffectslevelusefulpositionsusebuildingblockstherebycollapsingvariabilityfeedinglinkagesoccursgrowthdevelopmentindividualsissuerelevantintegratingoftenundergoextremeontogeneticshiftsusedthreeversionsfreshwatervaryinglevelsnoderesolutionexaminealterperceivedpositionConsistentpriorstudiesincreasedmeasurescomplexityhoweverdisaggregatedseveralegconnectancenestednessreversedduepartlowergeneralityparasiterelativefree-livingDisaggregationalsoreducedeitherdirectincludingpredationcaninflatecollapsedContrarypredictionsdisaggregationdecreasedintervalityenhanceAlthoughbiologicalorganizationwillvaryquestionsinterestresultssuggestdisaggregatingspecies-levelmayrefineperceptioncycleinfluenceecologicalnetworksComplexweb:stagestructure

Similar Articles

Cited By