Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution.

Tobias Warnecke, Erin A Becker, Marc T Facciotti, Corey Nislow, Ben Lehner
Author Information
  1. Tobias Warnecke: Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain ; Universitat Pompeu Fabra (UPF), Barcelona, Spain.

Abstract

Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change.

References

  1. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  2. PLoS Comput Biol. 2010 Dec 23;6(12):e1001039 [PMID: 21203484]
  3. Genome Biol Evol. 2011;3:15-22 [PMID: 21135411]
  4. Mol Cell Biol. 2011 Nov;31(21):4348-55 [PMID: 21896781]
  5. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  6. BMC Bioinformatics. 2009 Dec 22;10:442 [PMID: 20028554]
  7. PLoS Comput Biol. 2010 Jul 08;6(7):e1000834 [PMID: 20628623]
  8. Extremophiles. 1998 Aug;2(3):141-8 [PMID: 9783158]
  9. Curr Biol. 2012 Aug 7;22(15):1444-8 [PMID: 22748314]
  10. PLoS One. 2012;7(7):e41389 [PMID: 22848480]
  11. Nat Struct Mol Biol. 2011 Apr;18(4):510-5 [PMID: 21399641]
  12. Trends Genet. 2008 Dec;24(12):583-7 [PMID: 18951646]
  13. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  14. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  15. Biochimie. 2003 Nov;85(11):1133-47 [PMID: 14726019]
  16. Mol Syst Biol. 2010 May 11;6:365 [PMID: 20461072]
  17. Elife. 2012 Dec 13;1:e00078 [PMID: 23240084]
  18. PLoS Genet. 2008 Nov;4(11):e1000250 [PMID: 18989456]
  19. Mol Biol Evol. 2009 Jul;26(7):1591-605 [PMID: 19351792]
  20. J Mol Biol. 2000 Oct 13;303(1):25-34 [PMID: 11021967]
  21. J Biol Chem. 2002 Mar 15;277(11):9293-301 [PMID: 11751933]
  22. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  23. Genome Res. 2011 Nov;21(11):1777-87 [PMID: 21903742]
  24. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  25. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  26. Mol Biol Evol. 2010 Mar;27(3):637-49 [PMID: 19843619]
  27. Nat Rev Genet. 2009 Mar;10(3):161-72 [PMID: 19204718]
  28. Genome Biol Evol. 2012;4(12):1223-44 [PMID: 23160063]
  29. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  30. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  31. Bioinformatics. 2011 Jul 1;27(13):1758-64 [PMID: 21551148]
  32. Science. 2012 Mar 9;335(6073):1235-8 [PMID: 22403392]

Grants

  1. MOPS86705/Canadian Institutes of Health Research

MeSH Term

Archaea
Eukaryota
Evolution, Molecular
Genomics
Haloferax volcanii
Humans
Models, Genetic
Mutation
Nucleosomes
Phylogeny

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0nucleosomesnucleosomeevolutionsubstitutionpatternseukaryoticselectionassociationsequencemodelexplainrepositioninggenomeseukaryoteshistoneproteinsshowfootprintsfindingmutationsufficientdivergencefrequentNucleosomesbasicrepeatunitschromatinsuggestedinfluencealteringpropensityDNAmutateactingmaintainexcludeparticularlocationsContrarypopularideauniquealsodiscoveredarchaealArchaealhoweverquiteunlikecounterpartsmanyrespectsincludingassemblytetramersratheroctamerslackN-C-terminaltailsdespitefundamentaldifferencesstrikinglyconservedhumansarchaeonHaloferaxvolcaniilightexaminewhethercanconcordanttwokingdomsUnexpectedlyfindneitherobservedInsteaddemonstratenucleosome-associatedconsistentthirdresultsIndeednecessarylargelycurrentpositionsbiasedhighlightsimportanceconsideringdirectioncausalitygeneticepigeneticchangeConservedaroundArchaeaderive

Similar Articles

Cited By