Predicting the restricted mean event time with the subject's baseline covariates in survival analysis.

Lu Tian, Lihui Zhao, L J Wei
Author Information
  1. Lu Tian: Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA.

Abstract

For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, au ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.

Keywords

References

  1. N Engl J Med. 1997 Sep 11;337(11):725-33 [PMID: 9287227]
  2. Biometrics. 2001 Dec;57(4):1030-8 [PMID: 11764241]
  3. Stat Med. 2012 Jul 20;31(16):1722-37 [PMID: 22362470]
  4. Stat Med. 2011 Aug 30;30(19):2409-21 [PMID: 21611958]
  5. Biometrics. 2002 Dec;58(4):773-80 [PMID: 12495131]
  6. Lifetime Data Anal. 2004 Dec;10(4):335-50 [PMID: 15690989]
  7. Clin Trials. 2012 Oct;9(5):570-7 [PMID: 22914867]
  8. Biometrika. 2010 Jun;97(2):389-404 [PMID: 23049123]
  9. Biometrics. 1999 Dec;55(4):1101-7 [PMID: 11315054]

Grants

  1. RC4 CA155940/NCI NIH HHS
  2. R01 HL089778/NHLBI NIH HHS
  3. UM1 AI068634/NIAID NIH HHS
  4. R01 AI024643/NIAID NIH HHS
  5. U01 AI068616/NIAID NIH HHS
  6. U54 LM008748/NLM NIH HHS
  7. UM1 AI068616/NIAID NIH HHS
  8. R01 AI052817/NIAID NIH HHS

MeSH Term

HIV Infections
Humans
Liver Cirrhosis, Biliary
Models, Statistical
Survival Analysis
Time Factors

Word Cloud

Created with Highcharts 10.0.0timeeventmodelstudyRMETmodelsRMETsdatarestrictedmeansurvivalcancovariatesCoxfailuresetsampleconducteddesigningmonitoringanalyzinglongitudinaloutcomevariableeasilyinterpretableclinicallymeaningfulsummaryfunctionpresencecensoringaveragepotentialtimesmeasuredpointτestimatedconsistentlyareaKaplan-Meiercurve$[0\tau]$paperclassregressiondirectlyrelates"baseline"predictingfuturesubjects'Sincestandardacceleratedalsousedestimatingutilizecross-validationprocedureselect"best"amongworkingconsideredbuildingevaluationprocessLastlydrawinferencespredictedassessperformancefinalselectedusingindependent"hold-out"originalproposalsillustratedHIVclinicaltrialAIDSClinicalTrialsGroupprimarybiliarycirrhosisMayoClinicPredictingsubject'sbaselineanalysisAcceleratedCross-validationHold-outPersonalizedmedicinePerturbation-resamplingmethod

Similar Articles

Cited By (72)