Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.

Jakob Skou Pedersen, Eivind Valen, Amhed M Vargas Velazquez, Brian J Parker, Morten Rasmussen, Stinus Lindgreen, Berit Lilje, Desmond J Tobin, Theresa K Kelly, Søren Vang, Robin Andersson, Peter A Jones, Cindi A Hoover, Alexei Tikhonov, Egor Prokhortchouk, Edward M Rubin, Albin Sandelin, M Thomas P Gilbert, Anders Krogh, Eske Willerslev, Ludovic Orlando
Author Information
  1. Jakob Skou Pedersen: Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark;

Abstract

Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.

Associated Data

SRA | SRA105533

References

  1. Nature. 2010 Dec 23;468(7327):1053-60 [PMID: 21179161]
  2. Curr Biol. 2010 Feb 9;20(3):231-6 [PMID: 20045327]
  3. Nature. 2014 Jan 2;505(7481):87-91 [PMID: 24256729]
  4. Nature. 1984 Nov 15-21;312(5991):282-4 [PMID: 6504142]
  5. Genome Res. 2010 Apr;20(4):440-6 [PMID: 20219944]
  6. Mol Cell. 2012 Mar 30;45(6):814-25 [PMID: 22387027]
  7. Differentiation. 2009 Dec;78(5):292-300 [PMID: 19683850]
  8. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  9. Nucleic Acids Res. 2010 Apr;38(6):e87 [PMID: 20028723]
  10. Nucleic Acids Res. 2009 Nov;37(20):6701-15 [PMID: 19740762]
  11. Genome Res. 2012 Dec;22(12):2497-506 [PMID: 22960375]
  12. Nature. 2006 Feb 9;439(7077):724-7 [PMID: 16362058]
  13. Nat Struct Mol Biol. 2009 May;16(5):564-71 [PMID: 19377480]
  14. BMC Med Genomics. 2011 Sep 29;4:68 [PMID: 21958464]
  15. Nature. 2008 Nov 20;456(7220):387-90 [PMID: 19020620]
  16. J Proteome Res. 2012 Feb 3;11(2):917-26 [PMID: 22103443]
  17. Am J Pathol. 1997 Nov;151(5):1205-13 [PMID: 9358745]
  18. J Invest Dermatol. 2010 Jan;130(1):55-73 [PMID: 19587698]
  19. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  20. Aging (Albany NY). 2011 Oct;3(10):1018-27 [PMID: 22067257]
  21. Nature. 2010 Feb 11;463(7282):757-62 [PMID: 20148029]
  22. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  23. Genome Res. 2010 Mar;20(3):320-31 [PMID: 20133333]
  24. Science. 2012 Oct 12;338(6104):222-6 [PMID: 22936568]
  25. Nature. 2011 Nov 02;479(7373):359-64 [PMID: 22048313]
  26. Nucleic Acids Res. 2001 Dec 1;29(23):4793-9 [PMID: 11726688]
  27. Nucleic Acids Res. 2012 May;40(10):e72 [PMID: 22323520]
  28. Trends Ecol Evol. 2005 Oct;20(10):541-4 [PMID: 16701432]
  29. Science. 2005 Jul 22;309(5734):597-9 [PMID: 15933159]
  30. PLoS One. 2013 Jun 27;8(6):e67378 [PMID: 23826282]
  31. Genes Dev. 2011 May 15;25(10):1010-22 [PMID: 21576262]
  32. Genome Res. 2011 Nov;21(11):1863-71 [PMID: 21750105]
  33. Epigenetics Chromatin. 2013 Aug 06;6(1):26 [PMID: 23919675]
  34. Nature. 2008 Aug 7;454(7205):766-70 [PMID: 18600261]
  35. Nat Commun. 2013;4:2172 [PMID: 23863894]
  36. Genome Res. 2009 Aug;19(8):1419-28 [PMID: 19478138]
  37. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5675-80 [PMID: 20212118]
  38. Biotechniques. 2012 Feb;52(2):87-94 [PMID: 22313406]
  39. Mol Phylogenet Evol. 2003 Sep;28(3):485-99 [PMID: 12927133]
  40. Nat Commun. 2012 Feb 28;3:698 [PMID: 22426219]
  41. Science. 2004 Nov 26;306(5701):1561-5 [PMID: 15567864]
  42. Nat Genet. 2011 Jun 19;43(7):630-8 [PMID: 21685913]
  43. Biophys J. 2012 May 2;102(9):2140-8 [PMID: 22824278]
  44. Ann Clin Lab Sci. 2006 Spring;36(2):115-26 [PMID: 16682506]
  45. Genome Res. 2007 Jun;17(6):928-39 [PMID: 17568008]
  46. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8544-9 [PMID: 9671714]
  47. PLoS One. 2011;6(8):e24161 [PMID: 21904610]
  48. Elife. 2013 May 28;2:e00731 [PMID: 23741619]
  49. Science. 2001 Jan 19;291(5503):447-50 [PMID: 11228144]
  50. Science. 2011 Oct 7;334(6052):94-8 [PMID: 21940856]
  51. Genome Res. 2009 Jun;19(6):959-66 [PMID: 19273618]
  52. Science. 2006 Nov 17;314(5802):1113-8 [PMID: 17110569]
  53. J Biomol Struct Dyn. 2006 Aug;24(1):43-8 [PMID: 16780374]
  54. PLoS One. 2010 Jun 03;5(6):e10933 [PMID: 20532171]
  55. Nature. 2013 Jul 4;499(7456):74-8 [PMID: 23803765]
  56. Nat Methods. 2012 Jan 30;9(2):145-51 [PMID: 22290186]
  57. Nucleic Acids Res. 2011 Sep 1;39(16):6956-69 [PMID: 21622955]
  58. Science. 2013 Jul 12;341(6142):179-83 [PMID: 23765279]
  59. Genome Res. 2012 Apr;22(4):623-32 [PMID: 22300631]
  60. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  61. Bioinformatics. 2011 Aug 1;27(15):2153-5 [PMID: 21659319]
  62. PLoS One. 2012;7(1):e30226 [PMID: 22276161]
  63. Nature. 1998 Jan 1;391(6662):43-50 [PMID: 9422506]
  64. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2223-7 [PMID: 23341637]
  65. J Invest Dermatol. 2006 Feb;126(2):258-64 [PMID: 16418734]
  66. Science. 2010 May 7;328(5979):710-722 [PMID: 20448178]
  67. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1939-43 [PMID: 2928314]
  68. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  69. Mol Cell Proteomics. 2006 May;5(5):789-800 [PMID: 16446289]
  70. PLoS Genet. 2010 Sep 23;6(9):e1001134 [PMID: 20885785]
  71. Nature. 2011 Oct 12;478(7370):506-10 [PMID: 21993626]
  72. PLoS Genet. 2008 Jul 25;4(7):e1000138 [PMID: 18654629]
  73. Histochem Cell Biol. 2008 Jun;129(6):705-33 [PMID: 18461349]
  74. Epigenomics. 2013 Apr;5(2):205-27 [PMID: 23566097]
  75. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  76. Nature. 2001 Feb 8;409(6821):704-7 [PMID: 11217857]
  77. Nat Biotechnol. 2007 Feb;25(2):244-8 [PMID: 17220878]
  78. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14616-21 [PMID: 17715061]
  79. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):E2382-90 [PMID: 22826254]
  80. Science. 1997 Mar 21;275(5307):1793-6 [PMID: 9065404]
  81. PLoS One. 2011 Jan 18;6(1):e14524 [PMID: 21267076]
  82. PLoS One. 2010 Dec 29;5(12):e15754 [PMID: 21206756]
  83. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  84. Nat Biotechnol. 2009 Apr;27(4):361-8 [PMID: 19329998]
  85. Genes Dev. 2002 Jan 1;16(1):6-21 [PMID: 11782440]
  86. PLoS One. 2010 Jun 18;5(6):e11217 [PMID: 20585459]
  87. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]

Grants

  1. R01 CA082422/NCI NIH HHS

MeSH Term

Animals
Chromosome Mapping
Cytosine
DNA Methylation
Epigenesis, Genetic
Epigenomics
Evolution, Molecular
Gene Expression
Gene Expression Regulation
Genome, Human
Humans
Inuit
Nucleosomes
Phylogeny
Promoter Regions, Genetic
Sequence Analysis, DNA

Chemicals

Nucleosomes
Cytosine

Word Cloud

Created with Highcharts 10.0.0ancientinformationmethylationnucleosomelevelstimeepigeneticcanmapevolutionarygenome-widesequenceDNAUsinggenomehairSaqqaqcytosinemodernepigenomicEpigeneticavailablecontemporaryorganismsdifficulttrackbackshowgathereddirectlynext-generationreadsisolatedremainsdatageneratedshafts4000-yr-oldPaleo-Eskimobelongingculturegeneratefirstcoupledsurveyvalidityconfirmedrecoveryexpectedsignalspromoterregionsexon/intronboundariesCTCFsitestop-scoringcallsrevealeddistinctpositioningbiasesattestingnucleotide-levelaccuracyexhibitedhighconservationclusteringcloselytissuesestimatedagedeathindividualillustrateusedinfergeneexpressionSimilarsignaturesfoundfossilmaterial110000-130000-yr-oldbonessupportingcontentionreconstructeddeeppastfindingslayfoundationextractingsamplesallowingshiftsepiallelestrackedwellprovidingoriginalwindowepigenomicsGenome-widehuman

Similar Articles

Cited By