Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

Sammy Frenk, Tal Ben-Moshe, Ishai Dror, Brian Berkowitz, Dror Minz
Author Information
  1. Sammy Frenk: Institute for Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet-Dagan, Israel ; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
  2. Tal Ben-Moshe: Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel.
  3. Ishai Dror: Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel.
  4. Brian Berkowitz: Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel.
  5. Dror Minz: Institute for Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet-Dagan, Israel.

Abstract

Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and magnetite (Fe3O4) nanosized (<50 nm) particles. Two different soil types were examined: a sandy loam (Bet-Dagan) and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce their toxicity.

References

  1. Environ Int. 2011 Jan;37(1):112-28 [PMID: 20832119]
  2. Nanotechnology. 2008 Nov 5;19(44):445201 [PMID: 21832722]
  3. Appl Environ Microbiol. 2012 Sep;78(18):6749-58 [PMID: 22798374]
  4. ISME J. 2010 Jan;4(1):17-27 [PMID: 19710709]
  5. Chemosphere. 2013 Jan;90(2):640-6 [PMID: 23040650]
  6. Ecotoxicology. 2008 May;17(4):287-314 [PMID: 18351458]
  7. J Biol Inorg Chem. 2010 Jan;15(1):3-14 [PMID: 19774401]
  8. J Am Chem Soc. 2005 Jul 6;127(26):9326-7 [PMID: 15984833]
  9. Appl Environ Microbiol. 2009 Oct;75(20):6441-50 [PMID: 19700550]
  10. PLoS Comput Biol. 2009 Apr;5(4):e1000352 [PMID: 19360128]
  11. Microb Ecol. 2005 Jul;50(1):73-81 [PMID: 16052380]
  12. Environ Sci Technol. 2009 Sep 1;43(17):6757-63 [PMID: 19764246]
  13. PLoS One. 2008 Oct 03;3(10):e3326 [PMID: 18833331]
  14. J Hazard Mater. 2011 Feb 15;186(1):1-15 [PMID: 21134718]
  15. Microb Ecol. 2004 Jan;47(1):104-13 [PMID: 15259275]
  16. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  17. Waste Manag. 2010 Mar;30(3):504-20 [PMID: 19926463]
  18. Microb Ecol. 2011 Jul;62(1):58-68 [PMID: 21553058]
  19. Chemosphere. 2008 Apr;71(7):1308-16 [PMID: 18194809]
  20. PLoS One. 2012;7(3):e34197 [PMID: 22479561]
  21. Int J Syst Evol Microbiol. 2011 Nov;61(Pt 11):2626-2631 [PMID: 21148674]
  22. Trends Genet. 1995 Jan;11(1):8 [PMID: 7900196]
  23. Environ Microbiol. 2003 Oct;5(10):896-907 [PMID: 14510843]
  24. Chemosphere. 2012 Jul;88(5):670-5 [PMID: 22516207]
  25. PLoS One. 2012;7(8):e42663 [PMID: 22905159]
  26. J Hazard Mater. 2011 Jun 15;190(1-3):816-22 [PMID: 21546158]
  27. Environ Toxicol Chem. 2008 Sep;27(9):1825-51 [PMID: 19086204]
  28. PLoS One. 2011;6(12):e27310 [PMID: 22194782]
  29. Water Res. 2006 Nov;40(19):3527-32 [PMID: 17011015]
  30. Environ Sci Technol. 2007 Jun 15;41(12):4465-70 [PMID: 17626453]
  31. Genetics. 1992 Jun;131(2):479-91 [PMID: 1644282]
  32. Appl Environ Microbiol. 1982 Jun;43(6):1256-61 [PMID: 16346026]
  33. Environ Sci Pollut Res Int. 2006 Jul;13(4):225-32 [PMID: 16910119]
  34. Nat Rev Microbiol. 2007 May;5(5):384-92 [PMID: 17435792]
  35. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008 Feb 15;43(3):278-84 [PMID: 18205059]
  36. Toxicol Lett. 2007 Jul 10;171(3):99-110 [PMID: 17566673]
  37. Bioresour Technol. 2008 Sep;99(14):6059-69 [PMID: 18255287]
  38. Environ Pollut. 2000 Apr;108(1):103-12 [PMID: 15092971]
  39. J Hazard Mater. 2009 Aug 15;167(1-3):1170-7 [PMID: 19272704]
  40. Braz J Microbiol. 2011 Jan;42(1):66-74 [PMID: 24031606]
  41. Int J Pharm. 2002 Oct 10;246(1-2):37-45 [PMID: 12270607]
  42. Environ Pollut. 2008 Nov;156(2):233-9 [PMID: 18824285]
  43. FEMS Microbiol Ecol. 2009 Nov;70(2):137-48 [PMID: 19663920]

MeSH Term

Copper
Ferric Compounds
Magnetite Nanoparticles
Microbial Consortia
Oxidation-Reduction
Rhizobiaceae
Soil
Soil Microbiology
Sphingobacterium

Chemicals

Ferric Compounds
Magnetite Nanoparticles
Soil
ferric oxide
Copper
cupric oxide

Word Cloud

Created with Highcharts 10.0.0soilcommunitybacterialCuO1%ENPsBet-DaganYatirexposurecompositionenvironmentnanoparticlesoxideeffectsactivitydifferentpotentiallyENPbacteriasizeFe3O4typessandyloamclaytwo0indicatehydrolyticoxidativepotentialdecreasedFurthermoreabundanceadditionIncreasedavailabilitynanoparticle-basedproductswillinevitablyexposematerialsEngineeredmaythusfindwayviawastewaterdumpstersanthropogenicsourcesmetalliccompriseonegrouphazardousmajorserviceproviderecosystemhumankindcriticalstudyevaluatedmeasuringfollowingcoppermagnetitenanosized<50nmparticlesTwoexamined:concentrationsResultssusceptiblechangeduerelativespecificallystrongeffectnotedalthoughcausesignificantchangeschangedaffectannotatedOTUsBacilliclassincreasedreducedimportantgroupsincludingRhizobialesSphingobacteriaceaenegativelyaffectedresultsharmfulenvironmentssuggestedfractionorganicmattersoilsinteractreducetoxicityEffectmetalmicrobialstructurefunction

Similar Articles

Cited By