Nested sampling for Bayesian model comparison in the context of Salmonella disease dynamics.

Richard Dybowski, Trevelyan J McKinley, Pietro Mastroeni, Olivier Restif
Author Information
  1. Richard Dybowski: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
  2. Trevelyan J McKinley: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
  3. Pietro Mastroeni: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
  4. Olivier Restif: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.

Abstract

Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered.

References

  1. PLoS Comput Biol. 2010 Sep 30;6(9): [PMID: 20941388]
  2. Immunology. 2008 Sep;125(1):28-37 [PMID: 18298550]
  3. Math Biosci. 2002 Nov-Dec;180:103-14 [PMID: 12387918]
  4. N Engl J Med. 2005 Jan 6;352(1):75-7 [PMID: 15635117]
  5. PLoS Biol. 2006 Oct;4(11):e349 [PMID: 17048989]
  6. Nat Rev Microbiol. 2009 Jan;7(1):73-80 [PMID: 19079353]
  7. IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41 [PMID: 22499653]
  8. J Exp Med. 1997 Aug 18;186(4):569-80 [PMID: 9254655]
  9. Behav Res Methods Instrum Comput. 1999 Nov;31(4):701-5 [PMID: 10633988]
  10. J Acoust Soc Am. 2012 Nov;132(5):3251-62 [PMID: 23145609]
  11. PLoS Pathog. 2012;8(12):e1003070 [PMID: 23236281]
  12. Clin Infect Dis. 2010 Jan 15;50(2):241-6 [PMID: 20014951]
  13. Science. 2011 May 6;332(6030):726-9 [PMID: 21551063]
  14. Infect Immun. 2009 Dec;77(12):5608-11 [PMID: 19797065]
  15. Expert Rev Mol Med. 2011 Apr 11;13:e12 [PMID: 21477411]
  16. Cell Microbiol. 2003 Sep;5(9):593-600 [PMID: 12925129]
  17. Bull World Health Organ. 2004 May;82(5):346-53 [PMID: 15298225]

Grants

  1. BBS/B/02266/Biotechnology and Biological Sciences Research Council
  2. BB/I012192/1/Biotechnology and Biological Sciences Research Council
  3. BB/I002189/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Algorithms
Animals
Bayes Theorem
Colony Count, Microbial
Mice
Models, Biological
Probability
Salmonella Infections, Animal
Salmonella enterica
Stochastic Processes
Virulence

Word Cloud

Created with Highcharts 10.0.0comparisonmodelsposteriorparameterBayesiandistributionsdynamicscomplexbiologicalmultiplealternativemethodsAICintegrationsciencessamplingmodelSalmonellaestimationgoodness-of-fitUnderstandingmechanismsunderlyingobservedsystemsrequiresstatisticalassessmentAlthoughtraditionallydoneusingmaximumlikelihood-basedAkaike'sInformationCriteriongainedpopularityprovideinformativeoutputformprobabilityHoweverframeworkmadedifficultcomputationalcostnumericallargespacesnewefficientmethodcomputationprobabilitiesrecentlyproposedappliedproblemsphysicaldemonstratenestedcanusedinferencepresentreanalysisdataexperimentalinfectionmiceentericashowingdistributionbacterialivercellsadditionconfirmingmainfindingoriginalanalysisreliedapproachprovides:acrossspacebvisualisationscorrelationscpredictiveassessmentsresultssuggestmechanisticrelaxationquasi-stationaryassumptionconsideredNestedcontextdisease

Similar Articles

Cited By